295 research outputs found

    GUISET: A CONCEPTUAL DESIGN OF A GRID-ENABLED PORTAL FOR E-COMMERCE ON-DEMAND SERVICES

    Get PDF
    Conventional grid-enabled portal designs have been largely influenced by the usual functional requirements such as security requirements, grid resource requirements and job management requirements. However, the pay-as-you-use service provisioning model of utility computing platforms mean that additional requirements must be considered in order to realize effective grid-enabled portals design for such platforms. This work investigates those relevant additional requirements that must be considered for the design of grid-enabled portals for utility computing contexts. Based on a thorough review of literature, we identified a number of those relevant additional requirements, and developed a grid-enabled portal prototype for the Grid-based Utility Infrastructure for SMME-enabling Technology (GUISET) initiative – a utility computing platform. The GUISET portal was designed to cater for both the traditional grid requirements and some of the relevant additional requirements for utility computing contexts. The result of the evaluation of the GUISET portal prototype using a set of benchmark requirements (standards) revealed that it fulfilled the minimum requirements to be suitable for the utility context

    A Scalable Cluster-based Infrastructure for Edge-computing Services

    Get PDF
    In this paper we present a scalable and dynamic intermediary infrastruc- ture, SEcS (acronym of BScalable Edge computing Services’’), for developing and deploying advanced Edge computing services, by using a cluster of heterogeneous machines. Our goal is to address the challenges of the next-generation Internet services: scalability, high availability, fault-tolerance and robustness, as well as programmability and quick prototyping. The system is written in Java and is based on IBM’s Web Based Intermediaries (WBI) [71] developed at IBM Almaden Research Center

    Data management in cloud environments: NoSQL and NewSQL data stores

    Get PDF
    : Advances in Web technology and the proliferation of mobile devices and sensors connected to the Internet have resulted in immense processing and storage requirements. Cloud computing has emerged as a paradigm that promises to meet these requirements. This work focuses on the storage aspect of cloud computing, specifically on data management in cloud environments. Traditional relational databases were designed in a different hardware and software era and are facing challenges in meeting the performance and scale requirements of Big Data. NoSQL and NewSQL data stores present themselves as alternatives that can handle huge volume of data. Because of the large number and diversity of existing NoSQL and NewSQL solutions, it is difficult to comprehend the domain and even more challenging to choose an appropriate solution for a specific task. Therefore, this paper reviews NoSQL and NewSQL solutions with the objective of: (1) providing a perspective in the field, (2) providing guidance to practitioners and researchers to choose the appropriate data store, and (3) identifying challenges and opportunities in the field. Specifically, the most prominent solutions are compared focusing on data models, querying, scaling, and security related capabilities. Features driving the ability to scale read requests and write requests, or scaling data storage are investigated, in particular partitioning, replication, consistency, and concurrency control. Furthermore, use cases and scenarios in which NoSQL and NewSQL data stores have been used are discussed and the suitability of various solutions for different sets of applications is examined. Consequently, this study has identified challenges in the field, including the immense diversity and inconsistency of terminologies, limited documentation, sparse comparison and benchmarking criteria, and nonexistence of standardized query languages

    Adaptive intelligent tutoring for teaching modern standard Arabic

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyThe aim of this PhD thesis is to develop a framework for adaptive intelligent tutoring systems (ITS) in the domain of Modern Standard Arabic language. This framework will comprise of a new approach to using a fuzzy inference mechanism and generic rules in guiding the learning process. In addition, the framework will demonstrate another contribution in which the system can be adapted to be used in the teaching of different languages. A prototype system will be developed to demonstrate these features. This system is targeted at adult English-speaking casual learners with no pre-knowledge of the Arabic language. It will consist of two parts: an ITS for learners to use and a teachers‘ tool for configuring and customising the teaching rules and artificial intelligence components among other configuration operations. The system also provides a diverse teaching-strategies‘ environment based on multiple instructional strategies. This approach is based on general rules that provide means to a reconfigurable prediction. The ITS determines the learner‘s learning characteristics using multiple fuzzy inferences. It has a reconfigurable design that can be altered by the teacher at runtime via a teacher-interface. A framework for an independent domain (i.e. pluggable-domain) for foreign language tutoring systems is introduced in this research. This approach allows the system to adapt to the teaching of a different language with little changes required. Such a feature has the advantages of reducing the time and cost required for building intelligent language tutoring systems. To evaluate the proposed system, two experiments are conducted with two versions of the software: the ITS and a cut down version with no artificial intelligence components. The learners used the ITS had shown an increase in scores between the post-test and the pre-test with learning gain of 35% compared to 25% of the learners from the cut down version

    Automated Injection of Curated Knowledge Into Real-Time Clinical Systems: CDS Architecture for the 21st Century

    Get PDF
    abstract: Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for decades, and do not provide a broader, interoperable means of plugging structured clinical knowledge into live electronic health record (EHR) ecosystems for purposes of orchestrating the user experiences of patients and clinicians. To date, the gap between knowledge representation and user-facing EHR integration has been considered an “implementation concern” requiring unscalable manual human efforts and governance coordination. Drafting a questionnaire engineered to meet the specifications of the HL7 CDS Knowledge Artifact specification, for example, carries no reasonable expectation that it may be imported and deployed into a live system without significant burdens. Dramatic reduction of the time and effort gap in the research and application cycle could be revolutionary. Doing so, however, requires both a floor-to-ceiling precoordination of functional boundaries in the knowledge management lifecycle, as well as formalization of the human processes by which this occurs. This research introduces ARTAKA: Architecture for Real-Time Application of Knowledge Artifacts, as a concrete floor-to-ceiling technological blueprint for both provider heath IT (HIT) and vendor organizations to incrementally introduce value into existing systems dynamically. This is made possible by service-ization of curated knowledge artifacts, then injected into a highly scalable backend infrastructure by automated orchestration through public marketplaces. Supplementary examples of client app integration are also provided. Compilation of knowledge into platform-specific form has been left flexible, in so far as implementations comply with ARTAKA’s Context Event Service (CES) communication and Health Services Platform (HSP) Marketplace service packaging standards. Towards the goal of interoperable human processes, ARTAKA’s treatment of knowledge artifacts as a specialized form of software allows knowledge engineers to operate as a type of software engineering practice. Thus, nearly a century of software development processes, tools, policies, and lessons offer immediate benefit: in some cases, with remarkable parity. Analyses of experimentation is provided with guidelines in how choice aspects of software development life cycles (SDLCs) apply to knowledge artifact development in an ARTAKA environment. Portions of this culminating document have been further initiated with Standards Developing Organizations (SDOs) intended to ultimately produce normative standards, as have active relationships with other bodies.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    A Reference Software Architecture for Social Robots

    Full text link
    Social Robotics poses tough challenges to software designers who are required to take care of difficult architectural drivers like acceptability, trust of robots as well as to guarantee that robots establish a personalised interaction with their users. Moreover, in this context recurrent software design issues such as ensuring interoperability, improving reusability and customizability of software components also arise. Designing and implementing social robotic software architectures is a time-intensive activity requiring multi-disciplinary expertise: this makes difficult to rapidly develop, customise, and personalise robotic solutions. These challenges may be mitigated at design time by choosing certain architectural styles, implementing specific architectural patterns and using particular technologies. Leveraging on our experience in the MARIO project, in this paper we propose a series of principles that social robots may benefit from. These principles lay also the foundations for the design of a reference software architecture for Social Robots. The ultimate goal of this work is to establish a common ground based on a reference software architecture to allow to easily reuse robotic software components in order to rapidly develop, implement, and personalise Social Robots

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Big Data Now, 2015 Edition

    Get PDF
    Now in its fifth year, O’Reilly’s annual Big Data Now report recaps the trends, tools, applications, and forecasts we’ve talked about over the past year. For 2015, we’ve included a collection of blog posts, authored by leading thinkers and experts in the field, that reflect a unique set of themes we’ve identified as gaining significant attention and traction. Our list of 2015 topics include: Data-driven cultures Data science Data pipelines Big data architecture and infrastructure The Internet of Things and real time Applications of big data Security, ethics, and governance Is your organization on the right track? Get a hold of this free report now and stay in tune with the latest significant developments in big data
    • …
    corecore