3,436 research outputs found

    Interactive simulations for the learning and teaching of quantum mechanics concepts

    Get PDF
    Since 2009, we have been developing and evaluating interactive simulations with accompanying activities for the learning and teaching of quantum mechanics concepts at university level. The QuVis simulations build on education research and our lecturing experience, and aim to specifically target student areas of difficulty in quantum mechanics. Simulations are available on a wide range of topics from introductory to advanced level quantum mechanics. This article gives an overview of the three collections of QuVis simulations developed so far. These include simulations for physics students, simulations for physical chemistry students studying introductory quantum mechanics and simulations to support a new introductory quantum mechanics curriculum based on two-level systems. Evaluation with students plays a decisive role in optimizing the educational effectiveness of the simulations and activities. We describe methods used to refine and further develop the resources. We give examples of revisions based on outcomes of individual student observation sessions. 1.Postprin

    Implementation of Video Game Character Visual Effects Final Degree Work Report

    Get PDF
    Treball final de Grau en Disseny i Desenvolupament de Videojocs. Codi: VJ1241. Curs acadèmic: 2021/2022This document contains the report of the Video Game Design and Development Final Degree Project by Miguel Ferrer Carrasco. It consists of the development and implementation of six different stylized video game visual effects (VFX) in the game engine Unity 3D by using both procedural and handmade techniques. The effects implemented in this work are intended to serve as working assets for an action-RPG or fighting 3D video game, being reproducible and parameterized for their use in other projects

    Doctor of Philosophy in Computing

    Get PDF
    dissertationPhysics-based animation has proven to be a powerful tool for creating compelling animations for film and games. Most techniques in graphics are based on methods developed for predictive simulation for engineering applications; however, the goals for graphics applications are dramatically different than the goals of engineering applications. As a result, most physics-based animation tools are difficult for artists to work with, providing little direct control over simulation results. In this thesis, we describe tools for physics-based animation designed with artist needs and expertise in mind. Most materials can be modeled as elastoplastic: they recover from small deformations, but large deformations permanently alter their rest shape. Unfortunately, large plastic deformations, common in graphical applications, cause simulation instabilities if not addressed. Most elastoplastic simulation techniques in graphics rely on a finite-element approach where objects are discretized into a tetrahedral mesh. Using these approaches, maintaining simulation stability during large plastic flows requires remeshing, a complex and computationally expensive process. We introduce a new point-based approach that does not rely on an explicit mesh and avoids the expense of remeshing. Our approach produces comparable results with much lower implementation complexity. Points are a ubiquitous primitive for many effects, so our approach also integrates well with existing artist pipelines. Next, we introduce a new technique for animating stylized images which we call Dynamic Sprites. Artists can use our tool to create digital assets that interact in a natural, but stylized, way in virtual environments. In order to support the types of nonphysical, exaggerated motions often desired by artists, our approach relies on a heavily modified deformable body simulator, equipped with a set of new intuitive controls and an example-based deformation model. Our approach allows artists to specify how the shape of the object should change as it moves and collides in interactive virtual environments. Finally, we introduce a new technique for animating destructive scenes. Our approach is built on the insight that the most important visual aspects of destruction are plastic deformation and fracture. Like with Dynamic Sprites, we use an example-based model of deformation for intuitive artist control. Our simulator treats objects as rigid when computing dynamics but allows them to deform plastically and fracture in between timesteps based on interactions with the other objects. We demonstrate that our approach can efficiently animate the types of destructive scenes common in film and games. These animation techniques are designed to exploit artist expertise to ease creation of complex animations. By using artist-friendly primitives and allowing artists to provide characteristic deformations as input, our techniques enable artists to create more compelling animations, more easily

    Automatic Graphics And Game Content Generation Through Evolutionary Computation

    Get PDF
    Simulation and game content includes the levels, models, textures, items, and other objects encountered and possessed by players during the game. In most modern video games and simulation software, the set of content shipped with the product is static and unchanging, or at best, randomized within a narrow set of parameters. However, ideally, if game content could be constantly and automatically renewed, players would remain engaged longer in the evolving stream of content. This dissertation introduces three novel technologies that together realize this ambition. (1) The first, NEAT Particles, is an evolutionary method to enable users to quickly and easily create complex particle effects through a simple interactive evolutionary computation (IEC) interface. That way, particle effects become an evolvable class of content, which is exploited in the remainder of the dissertation. In particular, (2) a new algorithm called content-generating NeuroEvolution of Augmenting Topologies (cgNEAT) is introduced that automatically generates graphical and game content while the game is played, based on the past preferences of the players. Through cgNEAT, the game platform on its own can generate novel content that is designed to satisfy its players. Finally, (3) the Galactic Arms Race (GAR) multiplayer online video game is constructed to demonstrate these techniques working on a real online gaming platform. In GAR, which was made available to the public and playable online, players pilot space ships and fight enemies to acquire unique particle system weapons that are automatically evolved by the cgNEAT algorithm. The resulting study shows that cgNEAT indeed enables players to discover a wide variety of appealing content that is not only novel, but also based on and extended from previous content that they preferred in the past. The implication is that with cgNEAT it is now possible to create applications that generate their own content to satisfy users, potentially significantly reducing the cost of content creation and considerably increasing entertainment value with a constant stream of evolving content

    PlayPhysics: an emotional games learning environment for teaching Physics

    Get PDF

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Vector offset operators for deformable organic objects.

    Get PDF
    Many natural materials and most of living tissues exhibit complex deformable behaviours that may be characteriseda s organic. In computer animation, deformable organic material behaviour is needed for the development of characters and scenes based on living creatures and natural phenomena. This study addresses the problem of deformable organic material behaviour in computer animated objects. The focus of this study is concentrated on problems inherent in geometry based deformation techniques, such as non-intuitive interaction and difficulty in achieving realism. Further, the focus is concentrated on problems inherent in physically based deformation techniques, such as inefficiency and difficulty in enforcing spatial and temporal constraints. The main objective in this study is to find a general and efficient solution to interaction and animation of deformable 3D objects with natural organic material properties and constrainable behaviour. The solution must provide an interaction and animation framework suitable for the creation of animated deformable characters. An implementation of physical organic material properties such as plasticity, elasticity and iscoelasticity can provide the basis for an organic deformation model. An efficient approach to stress and strain control is introduced with a deformation tool named Vector Offset Operator. Stress / strain graphs control the elastoplastic behaviour of the model. Strain creep, stress relaxation and hysteresis graphs control the viscoelastic behaviour of the model. External forces may be applied using motion paths equipped with momentum / time graphs. Finally, spatial and temporal constraints are applied directly on vector operators. The suggested generic deformation tool introduces an intermediate layer between user interaction, deformation, elastoplastic and viscoelastic material behaviour and spatial and temporal constraints. This results in an efficient approach to deformation, frees object representation from deformation, facilitates the application of constraints and enables further development

    Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    Get PDF
    This major component of the research described in this thesis is 3D computer graphics, specifically the realistic physics-based softbody simulation and haptic responsive environments. Minor components include advanced human-computer interaction environments, non-linear documentary storytelling, and theatre performance. The journey of this research has been unusual because it requires a researcher with solid knowledge and background in multiple disciplines; who also has to be creative and sensitive in order to combine the possible areas into a new research direction. [...] It focuses on the advanced computer graphics and emerges from experimental cinematic works and theatrical artistic practices. Some development content and installations are completed to prove and evaluate the described concepts and to be convincing. [...] To summarize, the resulting work involves not only artistic creativity, but solving or combining technological hurdles in motion tracking, pattern recognition, force feedback control, etc., with the available documentary footage on film, video, or images, and text via a variety of devices [....] and programming, and installing all the needed interfaces such that it all works in real-time. Thus, the contribution to the knowledge advancement is in solving these interfacing problems and the real-time aspects of the interaction that have uses in film industry, fashion industry, new age interactive theatre, computer games, and web-based technologies and services for entertainment and education. It also includes building up on this experience to integrate Kinect- and haptic-based interaction, artistic scenery rendering, and other forms of control. This research work connects all the research disciplines, seemingly disjoint fields of research, such as computer graphics, documentary film, interactive media, and theatre performance together.Comment: PhD thesis copy; 272 pages, 83 figures, 6 algorithm
    • …
    corecore