1,168 research outputs found

    Algorithmic Verification of Asynchronous Programs

    Full text link
    Asynchronous programming is a ubiquitous systems programming idiom to manage concurrent interactions with the environment. In this style, instead of waiting for time-consuming operations to complete, the programmer makes a non-blocking call to the operation and posts a callback task to a task buffer that is executed later when the time-consuming operation completes. A co-operative scheduler mediates the interaction by picking and executing callback tasks from the task buffer to completion (and these callbacks can post further callbacks to be executed later). Writing correct asynchronous programs is hard because the use of callbacks, while efficient, obscures program control flow. We provide a formal model underlying asynchronous programs and study verification problems for this model. We show that the safety verification problem for finite-data asynchronous programs is expspace-complete. We show that liveness verification for finite-data asynchronous programs is decidable and polynomial-time equivalent to Petri Net reachability. Decidability is not obvious, since even if the data is finite-state, asynchronous programs constitute infinite-state transition systems: both the program stack and the task buffer of pending asynchronous calls can be potentially unbounded. Our main technical construction is a polynomial-time semantics-preserving reduction from asynchronous programs to Petri Nets and conversely. The reduction allows the use of algorithmic techniques on Petri Nets to the verification of asynchronous programs. We also study several extensions to the basic models of asynchronous programs that are inspired by additional capabilities provided by implementations of asynchronous libraries, and classify the decidability and undecidability of verification questions on these extensions.Comment: 46 pages, 9 figure

    Synthesis Of Distributed Protocols From Scenarios And Specifications

    Get PDF
    Distributed protocols, typically expressed as stateful agents communicating asynchronously over buffered communication channels, are difficult to design correctly. This difficulty has spurred decades of research in the area of automated model-checking algorithms. In turn, practical implementations of model-checking algorithms have enabled protocol developers to prove the correctness of such distributed protocols. However, model-checking techniques are only marginally useful during the actual development of such protocols; typically as a debugging aid once a reasonably complete version of the protocol has already been developed. The actual development process itself is often tedious and requires the designer to reason about complex interactions arising out of concurrency and asynchrony inherent to such protocols. In this dissertation we describe program synthesis techniques which can be applied as an enabling technology to ease the task of developing such protocols. Specifically, the programmer provides a natural, but incomplete description of the protocol in an intuitive representation — such as scenarios or an incomplete protocol. This description specifies the behavior of the protocol in the common cases. The programmer also specifies a set of high-level formal requirements that a correct protocol is expected to satisfy. These requirements can include safety requirements as well as liveness requirements in the form of Linear Temporal Logic (LTL) formulas. We describe techniques to synthesize a correct protocol which is consistent with the common-case behavior specified by the programmer and also satisfies the high-level safety and liveness requirements set forth by the programmer. We also describe techniques for program synthesis in general, which serve to enable the solutions to distributed protocol synthesis that this dissertation explores

    On Minimum-time Control of Continuous Petri nets: Centralized and Decentralized Perspectives

    Get PDF
    Muchos sistemas artificiales, como los sistemas de manufactura, de logística, de telecomunicaciones o de tráfico, pueden ser vistos "de manera natural" como Sistemas Dinámicos de Eventos Discretos (DEDS). Desafortunadamente, cuando tienen grandes poblaciones, estos sistemas pueden sufrir del clásico problema de la explosión de estados. Con la intención de evitar este problema, se pueden aplicar técnicas de fluidificación, obteniendo una relajación fluida del modelo original discreto. Las redes de Petri continuas (CPNs) son una aproximación fluida de las redes de Petri discretas, un conocido formalismo para los DEDS. Una ventaja clave del empleo de las CPNs es que, a menudo, llevan a una substancial reducción del coste computacional. Esta tesis se centra en el control de Redes de Petri continuas temporizadas (TCPNs), donde las transiciones tienen una interpretación temporal asociada. Se asume que los sistemas siguen una semántica de servidores infinitos (velocidad variable) y que las acciones de control aplicables son la disminución de la velocidad del disparo de las transiciones. Se consideran dos interesantes problemas de control en esta tesis: 1) control del marcado objetivo, donde el objetivo es conducir el sistema (tan rápido como sea posible) desde un estado inicial a un estado final deseado, y es similar al problema de control set-point para cualquier sistema de estado continuo; 2) control del flujo óptimo, donde el objetivo es conducir el sistema a un flujo óptimo sin conocimiento a priori del estado final. En particular, estamos interesados en alcanzar el flujo máximo tan rápido como sea posible, lo cual suele ser deseable en la mayoría de sistemas prácticos. El problema de control del marcado objetivo se considera desde las perspectivas centralizada y descentralizada. Proponemos varios controladores centralizados en tiempo mínimo, y todos ellos están basados en una estrategia ON/OFF. Para algunas subclases, como las redes Choice-Free (CF), se garantiza la evolución en tiempo mínimo; mientras que para redes generales, los controladores propuestos son heurísticos. Respecto del problema de control descentralizado, proponemos en primer lugar un controlador descentralizado en tiempo mínimo para redes CF. Para redes generales, proponemos una aproximación distribuida del método Model Predictive Control (MPC); sin embargo en este método no se considera evolución en tiempo mínimo. El problema de control de flujo óptimo (en nuestro caso, flujo máximo) en tiempo mínimo se considera para redes CF. Proponemos un algoritmo heurístico en el que calculamos los "mejores" firing count vectors que llevan al sistema al flujo máximo, y aplicamos una estrategia de disparo ON/OFF. También demostramos que, debido a que las redes CF son persistentes, podemos reducir el tiempo que tarda en alcanzar el flujo máximo con algunos disparos adicionales. Los métodos de control propuestos se han implementado e integrado en una herramienta para Redes de Petri híbridas basada en Matlab, llamada SimHPN

    From Agent Game Protocols to Implementable Roles

    Get PDF
    kostas.stathis-at-cs.rhul.ac.uk Abstract. We present a formal framework for decomposing agent interaction protocols to the roles their participants should play. The framework allows an Authority Agent that knows a protocol to compute the protocol’s roles so that it can allocate them to interested parties. We show how the Authority Agent can use the role descriptions to identify problems with the protocol and repair it on the fly, to ensure that participants will be able to implement their role requirements without compromising the protocol’s interactions. Our representation of agent interaction protocols is a game-based one and the decomposition of a game protocol into its constituent roles is based upon the branching bisimulation equivalence reduction of the game. The work extends our previous work on using games to admit agents in an artificial society by checking their competence according to the society rules. The applicability of the overall approach is illustrated by showing how to decompose the NetBill protocol into its roles. We also show how to automatically repair the interactions of a protocol that cannot be implemented in its original form.

    Modularity and Openness in Modeling Multi-Agent Systems

    Full text link
    We revisit the formalism of modular interpreted systems (MIS) which encourages modular and open modeling of synchronous multi-agent systems. The original formulation of MIS did not live entirely up to its promise. In this paper, we propose how to improve modularity and openness of MIS by changing the structure of interference functions. These relatively small changes allow for surprisingly high flexibility when modeling actual multi-agent systems. We demonstrate this on two well-known examples, namely the trains, tunnel and controller, and the dining cryptographers. Perhaps more importantly, we propose how the notions of multi-agency and openness, crucial for multi-agent systems, can be precisely defined based on their MIS representations.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    Full text link
    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Contributions to the deadlock problem in multithreaded software applications observed as Resource Allocation Systems

    Get PDF
    Desde el punto de vista de la competencia por recursos compartidos sucesivamente reutilizables, se dice que un sistema concurrente compuesto por procesos secuenciales está en situación de bloqueo si existe en él un conjunto de procesos que están indefinidamente esperando la liberación de ciertos recursos retenidos por miembros del mismo conjunto de procesos. En sistemas razonablemente complejos o distribuidos, establecer una política de asignación de recursos que sea libre de bloqueos puede ser un problema muy difícil de resolver de forma eficiente. En este sentido, los modelos formales, y particularmente las redes de Petri, se han ido afianzando como herramientas fructíferas que permiten abstraer el problema de asignación de recursos en este tipo de sistemas, con el fin de abordarlo analíticamente y proveer métodos eficientes para la correcta construcción o corrección de estos sistemas. En particular, la teoría estructural de redes de Petri se postula como un potente aliado para lidiar con el problema de la explosión de estados inherente a aquéllos. En este fértil contexto han florecido una serie de trabajos que defienden una propuesta metodológica de diseño orientada al estudio estructural y la correspondiente corrección física del problema de asignación de recursos en familias de sistemas muy significativas en determinados contextos de aplicación, como el de los Sistemas de Fabricación Flexible. Las clases de modelos de redes de Petri resultantes asumen ciertas restricciones, con significado físico en el contexto de aplicación para el que están destinadas, que alivian en buena medida la complejidad del problema. En la presente tesis, se intenta acercar ese tipo de aproximación metodológica al diseño de aplicaciones software multihilo libres de bloqueos. A tal efecto, se pone de manifiesto cómo aquellas restricciones procedentes del mundo de los Sistemas de Fabricación Flexible se muestran demasiado severas para aprehender la versatilidad inherente a los sistemas software en lo que respecta a la interacción de los procesos con los recursos compartidos. En particular, se han de resaltar dos necesidades de modelado fundamentales que obstaculizan la mera adopción de antiguas aproximaciones surgidas bajo el prisma de otros dominios: (1) la necesidad de soportar el anidamiento de bucles no desplegables en el interior de los procesos, y (2) la posible compartición de recursos no disponibles en el arranque del sistema pero que son creados o declarados por un proceso en ejecución. A resultas, se identifica una serie de requerimientos básicos para la definición de un tipo de modelos orientado al estudio de sistemas software multihilo y se presenta una clase de redes de Petri, llamada PC2R, que cumple dicha lista de requerimientos, manteniéndose a su vez respetuosa con la filosofía de diseño de anteriores subclases enfocadas a otros contextos de aplicación. Junto con la revisión e integración de anteriores resultados en el nuevo marco conceptual, se aborda el estudio de propiedades inherentes a los sistemas resultantes y su relación profunda con otros tipos de modelos, la confección de resultados y algoritmos eficientes para el análisis estructural de vivacidad en la nueva clase, así como la revisión y propuesta de métodos de resolución de los problemas de bloqueo adaptadas a las particularidades físicas del dominio de aplicación. Asimismo, se estudia la complejidad computacional de ciertas vertientes relacionadas con el problema de asignación de recursos en el nuevo contexto, así como la traslación de los resultados anteriormente mencionados sobre el dominio de la ingeniería de software multihilo, donde la nueva clase de redes permite afrontar problemas inabordables considerando el marco teórico y las herramientas suministradas para subclases anteriormente explotadas

    Layering Assume-Guarantee Contracts for Hierarchical System Design

    Get PDF
    Specifications for complex engineering systems are typically decomposed into specifications for individual subsystems in a manner that ensures they are implementable and simpler to develop further. We describe a method to algorithmically construct component specifications that implement a given specification when assembled. By eliminating variables that are irrelevant to realizability of each component, we simplify the specifications and reduce the amount of information necessary for operation. We parametrize the information flow between components by introducing parameters that select whether each variable is visible to a component. The decomposition algorithm identifies which variables can be hidden while preserving realizability and ensuring correct composition, and these are eliminated from component specifications by quantification and conversion of binary decision diagrams to formulas. The resulting specifications describe component viewpoints with full information with respect to the remaining variables, which is essential for tractable algorithmic synthesis of implementations. The specifications are written in TLA + , with liveness properties restricted to an implication of conjoined recurrence properties, known as GR(1). We define an operator for forming open systems from closed systems, based on a variant of the “while-plus” operator. This operator simplifies the writing of specifications that are realizable without being vacuous. To convert the generated specifications from binary decision diagrams to readable formulas over integer variables, we symbolically solve a minimal covering problem. We show with examples how the method can be applied to obtain contracts that formalize the hierarchical structure of system design

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    corecore