65,851 research outputs found

    Adding Curvature to Minimum Description Length Shape Models

    Get PDF
    The Minimum Description Length (MDL) approach to shape modelling seeks a compact description of a set of shapes in terms of the coordinates of marks on the shapes. It has been shown that the mark positions resulting from this optimisation to a large extent solve the so-called point correspondence problem: How to select points on shapes defined as curves so that the points correspond across a data set. However, this MDL approach does not capture important shape characteristics related to the curvature of the curves, and occasionally it places marks in obvious conflict with the human notion of point correspondence. This paper shows how the MDL approach can be fine-tuned by adding a term to the cost function expressing the mismatch of curvature features across the data set. The method is illustrated on silhouettes of adult heads. The MDL method is able to solve the point correspondence problem and a classification of the heads into male and female improves dramatically when using the MDL-generated marks

    Coupling nonpolar and polar solvation free energies in implicit solvent models

    Full text link
    Recent studies on the solvation of atomistic and nanoscale solutes indicate that a strong coupling exists between the hydrophobic, dispersion, and electrostatic contributions to the solvation free energy, a facet not considered in current implicit solvent models. We suggest a theoretical formalism which accounts for coupling by minimizing the Gibbs free energy of the solvent with respect to a solvent volume exclusion function. The resulting differential equation is similar to the Laplace-Young equation for the geometrical description of capillary interfaces, but is extended to microscopic scales by explicitly considering curvature corrections as well as dispersion and electrostatic contributions. Unlike existing implicit solvent approaches, the solvent accessible surface is an output of our model. The presented formalism is illustrated on spherically or cylindrically symmetrical systems of neutral or charged solutes on different length scales. The results are in agreement with computer simulations and, most importantly, demonstrate that our method captures the strong sensitivity of solvent expulsion and dewetting to the particular form of the solvent-solute interactions.Comment: accpted in J. Chem. Phy

    A simple prescription for simulating and characterizing gravitational arcs

    Get PDF
    Simple models of gravitational arcs are crucial to simulate large samples of these objects with full control of the input parameters. These models also provide crude and automated estimates of the shape and structure of the arcs, which are necessary when trying to detect and characterize these objects on massive wide area imaging surveys. We here present and explore the ArcEllipse, a simple prescription to create objects with shape similar to gravitational arcs. We also present PaintArcs, which is a code that couples this geometrical form with a brightness distribution and adds the resulting object to images. Finally, we introduce ArcFitting, which is a tool that fits ArcEllipses to images of real gravitational arcs. We validate this fitting technique using simulated arcs and apply it to CFHTLS and HST images of tangential arcs around clusters of galaxies. Our simple ArcEllipse model for the arc, associated to a S\'ersic profile for the source, recovers the total signal in real images typically within 10%-30%. The ArcEllipse+S\'ersic models also automatically recover visual estimates of length-to-width ratios of real arcs. Residual maps between data and model images reveal the incidence of arc substructure. They may thus be used as a diagnostic for arcs formed by the merging of multiple images. The incidence of these substructures is the main factor preventing ArcEllipse models from accurately describing real lensed systems.Comment: 12 pages, 11 figures, accepted for publication in A&

    Coupling hydrophobic, dispersion, and electrostatic contributions in continuum solvent models

    Full text link
    Recent studies of the hydration of micro- and nanoscale solutes have demonstrated a strong {\it coupling} between hydrophobic, dispersion and electrostatic contributions, a fact not accounted for in current implicit solvent models. We present a theoretical formalism which accounts for coupling by minimizing the Gibbs free energy with respect to a solvent volume exclusion function. The solvent accessible surface is output of our theory. Our method is illustrated with the hydration of alkane-assembled solutes on different length scales, and captures the strong sensitivity to the particular form of the solute-solvent interactions in agreement with recent computer simulations.Comment: 11 pages, 2 figure

    Nematic liquid crystals on curved surfaces - a thin film limit

    Full text link
    We consider a thin film limit of a Landau-de Gennes Q-tensor model. In the limiting process we observe a continuous transition where the normal and tangential parts of the Q-tensor decouple and various intrinsic and extrinsic contributions emerge. Main properties of the thin film model, like uniaxiality and parameter phase space, are preserved in the limiting process. For the derived surface Landau-de Gennes model, we consider an L2-gradient flow. The resulting tensor-valued surface partial differential equation is numerically solved to demonstrate realizations of the tight coupling of elastic and bulk free energy with geometric properties.Comment: 20 pages, 4 figure

    Helical buckling of Skyrme-Faddeev solitons

    Get PDF
    Solitons in the Skyrme-Faddeev model on R^2xS^1 are shown to undergo buckling transitions as the circumference of the S^1 is varied. These results support a recent conjecture that solitons in this field theory are well-described by a much simpler model of elastic rods.Comment: 24 pages, 9 figure
    corecore