68,069 research outputs found

    An Experiment in Interoperable Cryptographic Protocol Implementation Using Automatic Code Generation

    Get PDF
    Spi2Java is a tool that enables semi-automatic generation of cryptographic protocol implementations, starting from verified formal models. This paper shows how the last version of spi2Java has been enhanced in order to enable interoperability of the generated implementations. The new features that have been added to spi2Java are reported here. A case study on the SSH transport layer protocol, along with some experiments and measures on the generated code, is also provided. The case study shows, with facts, that reliable and interoperable implementations of standard security protocols can indeed be obtained by using a code generation tool like spi2Jav

    Formally based semi-automatic implementation of an open security protocol

    Get PDF
    International audienceThis paper presents an experiment in which an implementation of the client side of the SSH Transport Layer Protocol (SSH-TLP) was semi-automatically derived according to a model-driven development paradigm that leverages formal methods in order to obtain high correctness assurance. The approach used in the experiment starts with the formalization of the protocol at an abstract level. This model is then formally proved to fulfill the desired secrecy and authentication properties by using the ProVerif prover. Finally, a sound Java implementation is semi-automatically derived from the verified model using an enhanced version of the Spi2Java framework. The resulting implementation correctly interoperates with third party servers, and its execution time is comparable with that of other manually developed Java SSH-TLP client implementations. This case study demonstrates that the adopted model-driven approach is viable even for a real security protocol, despite the complexity of the models needed in order to achieve an interoperable implementation

    Visual Model-Driven Design, Verification and Implementation of Security Protocols

    Get PDF
    A novel visual model-driven approach to security protocol design, verification, and implementation is presented in this paper. User-friendly graphical models are combined with rigorous formal methods to enable protocol verification and sound automatic code generation. Domain-specific abstractions keep the graphical models simple, yet powerful enough to represent complex, realistic protocols such as SSH. The main contribution is to bring together aspects that were only partially available or not available at all in previous proposal

    Git4Voc: Git-based Versioning for Collaborative Vocabulary Development

    Full text link
    Collaborative vocabulary development in the context of data integration is the process of finding consensus between the experts of the different systems and domains. The complexity of this process is increased with the number of involved people, the variety of the systems to be integrated and the dynamics of their domain. In this paper we advocate that the realization of a powerful version control system is the heart of the problem. Driven by this idea and the success of Git in the context of software development, we investigate the applicability of Git for collaborative vocabulary development. Even though vocabulary development and software development have much more similarities than differences there are still important differences. These need to be considered within the development of a successful versioning and collaboration system for vocabulary development. Therefore, this paper starts by presenting the challenges we were faced with during the creation of vocabularies collaboratively and discusses its distinction to software development. Based on these insights we propose Git4Voc which comprises guidelines how Git can be adopted to vocabulary development. Finally, we demonstrate how Git hooks can be implemented to go beyond the plain functionality of Git by realizing vocabulary-specific features like syntactic validation and semantic diffs

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Defect prediction with bad smells in code

    Get PDF
    Background: Defect prediction in software can be highly beneficial for development projects, when prediction is highly effective and defect-prone areas are predicted correctly. One of the key elements to gain effective software defect prediction is proper selection of metrics used for dataset preparation. Objective: The purpose of this research is to verify, whether code smells metrics, collected using Microsoft CodeAnalysis tool, added to basic metric set, can improve defect prediction in industrial software development project. Results: We verified, if dataset extension by the code smells sourced metrics, change the effectiveness of the defect prediction by comparing prediction results for datasets with and without code smells-oriented metrics. In a result, we observed only small improvement of effectiveness of defect prediction when dataset extended with bad smells metrics was used: average accuracy value increased by 0.0091 and stayed within the margin of error. However, when only use of code smells based metrics were used for prediction (without basic set of metrics), such process resulted with surprisingly high accuracy (0.8249) and F-measure (0.8286) results. We also elaborated data anomalies and problems we observed when two different metric sources were used to prepare one, consistent set of data. Conclusion: Extending the dataset by the code smells sourced metric does not significantly improve the prediction effectiveness. Achieved result did not compensate effort needed to collect additional metrics. However, we observed that defect prediction based on the code smells only is still highly effective and can be used especially where other metrics hardly be used.Comment: Chapter 10 in Software Engineering: Improving Practice through Research (B. Hnatkowska and M. \'Smia{\l}ek, eds.), pp. 163-176, 201
    corecore