45 research outputs found

    A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology

    Get PDF
    This work deals with the numerical solution of the monodomain and bidomain models of electrical activity of myocardial tissue. The bidomain model is a system consisting of a possibly degenerate parabolic PDE coupled with an elliptic PDE for the transmembrane and extracellular potentials, respectively. This system of two scalar PDEs is supplemented by a time-dependent ODE modeling the evolution of the so-called gating variable. In the simpler sub-case of the monodomain model, the elliptic PDE reduces to an algebraic equation. Two simple models for the membrane and ionic currents are considered, the Mitchell-Schaeffer model and the simpler FitzHugh-Nagumo model. Since typical solutions of the bidomain and monodomain models exhibit wavefronts with steep gradients, we propose a finite volume scheme enriched by a fully adaptive multiresolution method, whose basic purpose is to concentrate computational effort on zones of strong variation of the solution. Time adaptivity is achieved by two alternative devices, namely locally varying time stepping and a Runge-Kutta-Fehlberg-type adaptive time integration. A series of numerical examples demonstrates thatthese methods are efficient and sufficiently accurate to simulate the electrical activity in myocardial tissue with affordable effort. In addition, an optimalthreshold for discarding non-significant information in the multiresolution representation of the solution is derived, and the numerical efficiency and accuracy of the method is measured in terms of CPU time speed-up, memory compression, and errors in different norms.Comment: 25 pages, 41 figure

    Adaptive multiresolution computations applied to detonations

    Full text link
    A space-time adaptive method is presented for the reactive Euler equations describing chemically reacting gas flow where a two species model is used for the chemistry. The governing equations are discretized with a finite volume method and dynamic space adaptivity is introduced using multiresolution analysis. A time splitting method of Strang is applied to be able to consider stiff problems while keeping the method explicit. For time adaptivity an improved Runge--Kutta--Fehlberg scheme is used. Applications deal with detonation problems in one and two space dimensions. A comparison of the adaptive scheme with reference computations on a regular grid allow to assess the accuracy and the computational efficiency, in terms of CPU time and memory requirements.Comment: Zeitschrift f\"ur Physicalische Chemie, accepte

    BPX preconditioners for the Bidomain model of electrocardiology

    Get PDF
    The aim of this work is to develop a BPX preconditioner for the Bidomain model of electrocardiology. This model describes the bioelectrical activity of the cardiac tissue and consists of a system of a non-linear parabolic reaction\u2013diffusion partial differential equation (PDE) and an elliptic linear PDE, modeling at macroscopic level the evolution of the transmembrane and extracellular electric potentials of the anisotropic cardiac tissue. The evolution equation is coupled through the non-linear reaction term with a stiff system of ordinary differential equations, the so-called membrane model, describing the ionic currents through the cellular membrane. The discretization of the coupled system by finite elements in space and semi-implicit finite differences in time yields at each time step the solution of an ill-conditioned linear system. The goal of the present study is to construct, analyze and numerically test a BPX preconditioner for the linear system arising from the discretization of the Bidomain model. Optimal convergence rate estimates are established and verified by two- and three-dimensional numerical tests on both structured and unstructured meshes. Moreover, in a full heartbeat simulation on a three-dimensional wedge of ventricular tissue, the BPX preconditioner is about 35% faster in terms of CPU times than ILU(0) and an Algebraic Multigrid preconditioner

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar

    Efficient adaptivity for simulating cardiac electrophysiology with spectral deferred correction methods

    Full text link
    The locality of solution features in cardiac electrophysiology simulations calls for adaptive methods. Due to the overhead incurred by established mesh refinement and coarsening, however, such approaches failed in accelerating the computations. Here we investigate a different route to spatial adaptivity that is based on nested subset selection for algebraic degrees of freedom in spectral deferred correction methods. This combination of algebraic adaptivity and iterative solvers for higher order collocation time stepping realizes a multirate integration with minimal overhead. This leads to moderate but significant speedups in both monodomain and cell-by-cell models of cardiac excitation, as demonstrated at four numerical examples.Comment: 12 pages, 12 figure

    An introduction to mathematical and numerical modeling in heart electrophysiology

    Get PDF
    The electrical activation of the heart is the biological process that regulates the contraction of the cardiac muscle, allowing it to pump blood to the whole body. In physiological conditions, the pacemaker cells of the sinoatrial node generate an action potential (a sudden variation of the cell transmembrane potential) which, following preferential conduction pathways, propagates throughout the heart walls and triggers the contraction of the heart chambers. The action potential propagation can be mathematically described by coupling a model for the ionic currents, flowing through the membrane of a single cell, with a macroscopical model that describes the propagation of the electrical signal in the cardiac tissue. The most accurate model available in the literature for the description of the macroscopic propagation in the muscle is the Bidomain model, a degenerate parabolic system composed of two non-linear partial differential equations for the intracellular and extracellular potential. In this paper, we present an introduction to the fundamental aspects of mathematical modeling and numerical simulation in cardiac electrophysiology
    corecore