359 research outputs found

    Towards remote fault detection by analyzing communication priorities

    Full text link
    The ability to detect faults is an important safety feature for event-based multi-agent systems. In most existing algorithms, each agent tries to detect faults by checking its own behavior. But what if one agent becomes unable to recognize misbehavior, for example due to failure in its onboard fault detection? To improve resilience and avoid propagation of individual errors to the multi-agent system, agents should check each other remotely for malfunction or misbehavior. In this paper, we build upon a recently proposed predictive triggering architecture that involves communication priorities shared throughout the network to manage limited bandwidth. We propose a fault detection method that uses these priorities to detect errors in other agents. The resulting algorithms is not only able to detect faults, but can also run on a low-power microcontroller in real-time, as we demonstrate in hardware experiments

    An Adaptive Fault-Tolerant Communication Scheme for Body Sensor Networks

    Get PDF
    A high degree of reliability for critical data transmission is required in body sensor networks (BSNs). However, BSNs are usually vulnerable to channel impairments due to body fading effect and RF interference, which may potentially cause data transmission to be unreliable. In this paper, an adaptive and flexible fault-tolerant communication scheme for BSNs, namely AFTCS, is proposed. AFTCS adopts a channel bandwidth reservation strategy to provide reliable data transmission when channel impairments occur. In order to fulfill the reliability requirements of critical sensors, fault-tolerant priority and queue are employed to adaptively adjust the channel bandwidth allocation. Simulation results show that AFTCS can alleviate the effect of channel impairments, while yielding lower packet loss rate and latency for critical sensors at runtime.Comment: 10 figures, 19 page

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Engineering Emergence: A Survey on Control in the World of Complex Networks

    Get PDF
    Complex networks make an enticing research topic that has been increasingly attracting researchers from control systems and various other domains over the last two decades. The aim of this paper was to survey the interest in control related to complex networks research over time since 2000 and to identify recent trends that may generate new research directions. The survey was performed for Web of Science, Scopus, and IEEEXplore publications related to complex networks. Based on our findings, we raised several questions and highlighted ongoing interests in the control of complex networks.publishedVersio

    A model-based approach for automatic recovery from memory leaks in enterprise applications

    Get PDF
    Large-scale distributed computing systems such as data centers are hosted on heterogeneous and networked servers that execute in a dynamic and uncertain operating environment, caused by factors such as time-varying user workload and various failures. Therefore, achieving stringent quality-of-service goals is a challenging task, requiring a comprehensive approach to performance control, fault diagnosis, and failure recovery. This work presents a model-based approach for fault management, which integrates limited lookahead control (LLC), diagnosis, and fault-tolerance concepts that: (1) enables systems to adapt to environment variations, (2) maintains the availability and reliability of the system, (3) facilitates system recovery from failures. We focused on memory leak errors in this thesis. A characterization function is designed to detect memory leaks. Then, a LLC is applied to enable the computing system to adapt efficiently to variations in the workload, and to enable the system recover from memory leaks and maintain functionality

    Senslide: a distributed landslide prediction system

    Get PDF
    We describe the design, implementation, and current status of Senslide, a distributed sensor system aimed at predicting landslides in the hilly regions of western India. Landslides in this region occur during the monsoon rains and cause significant damage to property and lives. Unlike existing solutions that detect landslides in this region, our goal is to predict them before they occur. Also, unlike previous efforts that use a few but expensive sensors to measure slope stability, our solution uses a large number of inexpensive sensor nodes inter-connected by a wireless network. Our system software is designed to tolerate the increased failures such inexpensive components may entail. We have implemented our design in the small on a laboratory testbed of 65 sensor nodes, and present results from that testbed as well as simulation results for larger systems up to 400 sensor nodes. Our results are sufficiently encouraging that we intend to do a field test of the system during the monsoon season in India

    Design, Development and Assessment of Control Schemes for IDMS in a Standardized RTCP-based Solution

    Full text link
    [EN] Currently, several media sharing applications that allow social interactions between distributed users are gaining momentum. In these networked scenarios, synchronized playout between the involved participants must be provided to enable truly interactive and coherent shared media experiences. This research topic is known as Inter-Destination Media Synchronization (IDMS). This paper presents the design and development of an advanced IDMS solution, which is based on extending the capabilities of RTP/RTCP standard protocols. Particularly, novel RTCP extensions, in combination with several control algorithms and adjustment techniques, have been specified to enable an adaptive, highly accurate and standard compliant IDMS solution. Moreover, as different control or architectural schemes for IDMS exist, and each one is best suited for specific use cases, the IDMS solution has been extended to be able to adopt each one of them. Simulation results prove the satisfactory responsiveness of our IDMS solution in a small scale scenario, as well as its consistent behavior, when using each one of the deployed architectural schemes.This work has been financed, partially, by Universitat Politecnica de Valencia (UPV), under its R&D Support Program in PAID-01-10. TNO's work has been partially funded by European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. ICT-2011-8-318343 (STEER Project). CWI's work has been partially funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. ICT-2011-7-287723 (REVERIE Project).Montagud Aguar, M.; Boronat Segui, F.; Stokking, H.; Cesar, P. (2014). Design, Development and Assessment of Control Schemes for IDMS in a Standardized RTCP-based Solution. Computer Networks. 70:240-259. https://doi.org/10.1016/j.comnet.2014.06.004S2402597
    • …
    corecore