6,540 research outputs found

    Adaptive-mutation compact genetic algorithm for dynamic environments

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link

    Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system

    Full text link
    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to neural networks. This paper presents results from an investigation into using discrete and fuzzy dynamical system representations within the XCSF learning classifier system. In particular, asynchronous random Boolean networks are used to represent the traditional condition-action production system rules in the discrete case and asynchronous fuzzy logic networks in the continuous-valued case. It is shown possible to use self-adaptive, open-ended evolution to design an ensemble of such dynamical systems within XCSF to solve a number of well-known test problems

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Analysis of Noisy Evolutionary Optimization When Sampling Fails

    Full text link
    In noisy evolutionary optimization, sampling is a common strategy to deal with noise. By the sampling strategy, the fitness of a solution is evaluated multiple times (called \emph{sample size}) independently, and its true fitness is then approximated by the average of these evaluations. Previous studies on sampling are mainly empirical. In this paper, we first investigate the effect of sample size from a theoretical perspective. By analyzing the (1+1)-EA on the noisy LeadingOnes problem, we show that as the sample size increases, the running time can reduce from exponential to polynomial, but then return to exponential. This suggests that a proper sample size is crucial in practice. Then, we investigate what strategies can work when sampling with any fixed sample size fails. By two illustrative examples, we prove that using parent or offspring populations can be better. Finally, we construct an artificial noisy example to show that when using neither sampling nor populations is effective, adaptive sampling (i.e., sampling with an adaptive sample size) can work. This, for the first time, provides a theoretical support for the use of adaptive sampling
    corecore