5,425 research outputs found

    An adaptive extended fuzzy function state-observer based control with unknown control direction

    Get PDF
    In this paper, a novel adaptive extended fuzzy function state observer based controller is proposed to control a class of unknown or uncertain nonlinear systems. The controller uses Nussbaum-gain technique from literature to prevent controller singularity with unknown control direction and the controller degree of freedom is increased. A state observer which employs the adaptive extended fuzzy function system to approximate a nonlinear system dynamics and estimates the unmeasurable state. The stability of closed-loop control system are shown using Lyapunov stability criterion and Nussbaum function property. The proposed and conventional fuzzy system based controllers are designed to control an inverted pendulum in simulation and a flexible-joint manipulator in real-time experiment. The integral of absoulte error (IAE) of tracking, integral of squared error (ISE) of tracking and integral of required absolute control signal (IA U) performances are compared in applications. The aim of the paper is not only to improve the tracking performances, but also to implement the adaptive extended fuzzy function based controller to a real-time system and conduct the tracking with unknown control direction

    EASILY VERIFIABLE CONTROLLER DESIGN WITH APPLICATION TO AUTOMOTIVE POWERTRAINS

    Get PDF
    Bridging the gap between designed and implemented model-based controllers is a major challenge in the design cycle of industrial controllers. This gap is mainly created due to (i) digital implementation of controller software that introduces sampling and quantization imprecisions via analog-to-digital conversion (ADC), and (ii) uncertainties in the modeled plant’s dynamics, which directly propagate through the controller structure. The failure to identify and handle these implementation and model uncertainties results in undesirable controller performance and costly iterative loops for completing the controller verification and validation (V&V) process. This PhD dissertation develops a novel theoretical framework to design controllers that are robust to implementation imprecision and uncertainties within the models. The proposed control framework is generic and applicable to a wide range of nonlinear control systems. The final outcome from this study is an uncertainty/imprecisions adaptive, easily verifiable, and robust control theory framework that minimizes V&V iterations in the design of complex nonlinear control systems. The concept of sliding mode controls (SMC) is used in this study as the baseline to construct an easily verifiable model-based controller design framework. SMC is a robust and computationally efficient controller design technique for highly nonlinear systems, in the presence of model and external uncertainties. The SMC structure allows for further modification to improve the controller robustness against implementation imprecisions, and compensate for the uncertainties within the plant model. First, the conventional continuous-time SMC design is improved by: (i) developing a reduced-order controller based on a novel model order reduction technique. The reduced order SMC shows better performance, since it uses a balanced realization form of the plant model and reduces the destructive internal interaction among different states of the system. (ii) developing an uncertainty-adaptive SMC with improved robustness against implementation imprecisions. Second, the continuous-time SMC design is converted to a discrete-time SMC (DSMC). The baseline first order DSMC structure is improved by: (i) inclusion of the ADC imprecisions knowledge via a generic sampling and quantization uncertainty prediction mechanism which enables higher robustness against implementation imprecisions, (ii) deriving the adaptation laws via a Lyapunov stability analysis to overcome uncertainties within the plant model, and (iii) developing a second order adaptive DSMC with predicted ADC imprecisions, which provides faster and more robust performance under modeling and implementation imprecisions, in comparison with the first order DSMC. The developed control theories from this PhD dissertation have been evaluated in real-time for two automotive powertrain case studies, including highly nonlinear combustion engine, and linear DC motor control problems. Moreover, the DSMC with predicted ADC imprecisions is experimentally tested and verified on an electronic air throttle body testbed for model-based position tracking purpose

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    Predictor-Feedback Stabilization of Multi-Input Nonlinear Systems

    Full text link
    We develop a predictor-feedback control design for multi-input nonlinear systems with distinct input delays, of arbitrary length, in each individual input channel. Due to the fact that different input signals reach the plant at different time instants, the key design challenge, which we resolve, is the construction of the predictors of the plant's state over distinct prediction horizons such that the corresponding input delays are compensated. Global asymptotic stability of the closed-loop system is established by utilizing arguments based on Lyapunov functionals or estimates on solutions. We specialize our methodology to linear systems for which the predictor-feedback control laws are available explicitly and for which global exponential stability is achievable. A detailed example is provided dealing with the stabilization of the nonholonomic unicycle, subject to two different input delays affecting the speed and turning rate, for the illustration of our methodology.Comment: Submitted to IEEE Transactions on Automatic Control on May 19 201
    • …
    corecore