5,310 research outputs found

    First results from SAM-FP: Fabry-Perot observations with ground-layer adaptive optics - the structure and kinematics of the core of 30 Doradus

    Full text link
    The aim of this paper is to present the first data set obtained with SOAR Adaptive Module-Fabry-Parot (SAM-FP), a Fabry-Perot instrument mounted inside the SOAR telescope Adaptive-Optics Module. This is the only existing imaging Fabry-Perot interferometer using laser-assisted ground-layer adaptive optics. SAM-FP was used to observe the ionized gas, traced by Halpha, in the centre of the 30 Doradus starburst (the Tarantula Nebula) in the Large Magellanic Cloud, with high spatial (~0.6" or 0.15 pc) and spectral (R=11200) resolution. Radial velocity, velocity dispersion and monochromatic maps were derived. The region displays a mix of narrow, sigma ~ 20 km/s profiles and multiple broader profiles with sigma ~ 70-80 km/s, indicating the complex nature of the nebula kinematics. A comparison with previously obtained VLT/FLAMES spectroscopy demonstrates that the data agree well in the regions of overlap, but the Fabry-Perot data are superior in spatial coverage. A preliminary analysis of the observations finds a new expanding bubble south of R136, with a projected radius of r=5.6 pc and an expansion velocity of 29 +/- 4 km/s. In addition, the first-time detailed kinematic maps derived here for several complexes and filaments of 30 Doradus allow identification of kinematically independent structures. These data exemplify the power of the combination of a high-order Fabry-Perot with a wide-field imager (3' x 3' GLAO-corrected field of view) for high-resolution spatial and spectral studies. In particular, SAM-FP data cubes are highly advantageous over multifibre or long-slit data sets for nebula structure studies and to search for small-scale bubbles, given their greatly improved spatial coverage. For reference, this paper also presents two appendices with detailed descriptions of the usage of Fabry-Perot devices, including formulae and explanations for understanding Fabry-Perot observations.Comment: 22 pages, 9 figures, 1 tabl

    Adaptive smartphone-based sensor fusion for estimating competitive rowing kinematic metrics.

    Get PDF
    Competitive rowing highly values boat position and velocity data for real-time feedback during training, racing and post-training analysis. The ubiquity of smartphones with embedded position (GPS) and motion (accelerometer) sensors motivates their possible use in these tasks. In this paper, we investigate the use of two real-time digital filters to achieve highly accurate yet reasonably priced measurements of boat speed and distance traveled. Both filters combine acceleration and location data to estimate boat distance and speed; the first using a complementary frequency response-based filter technique, the second with a Kalman filter formalism that includes adaptive, real-time estimates of effective accelerometer bias. The estimates of distance and speed from both filters were validated and compared with accurate reference data from a differential GPS system with better than 1 cm precision and a 5 Hz update rate, in experiments using two subjects (an experienced club-level rower and an elite rower) in two different boats on a 300 m course. Compared with single channel (smartphone GPS only) measures of distance and speed, the complementary filter improved the accuracy and precision of boat speed, boat distance traveled, and distance per stroke by 44%, 42%, and 73%, respectively, while the Kalman filter improved the accuracy and precision of boat speed, boat distance traveled, and distance per stroke by 48%, 22%, and 82%, respectively. Both filters demonstrate promise as general purpose methods to substantially improve estimates of important rowing performance metrics

    The Brazilian Tunable Filter Imager for the SOAR telescope

    Full text link
    This paper presents a new Tunable Filter Instrument for the SOAR telescope. The Brazilian Tunable Filter Imager (BTFI) is a versatile, new technology, tunable optical imager to be used in seeing-limited mode and at higher spatial fidelity using the SAM Ground-Layer Adaptive Optics facility at the SOAR telescope. The instrument opens important new science capabilities for the SOAR community, from studies of the centers of nearby galaxies and the insterstellar medium to statistical cosmological investigations. The BTFI takes advantage of three new technologies. The imaging Bragg Tunable Filter concept utilizes Volume Phase Holographic Gratings in a double-pass configuration, as a tunable filter, while a new Fabry-Perot (FP) concept involves technologies which allow a single FP etalon to act over a large range of interference orders and spectral resolutions. Both technologies will be in the same instrument. Spectral resolutions spanning the range between 25 and 30,000 can be achieved through the use of iBTF at low resolution and scanning FPs beyond R ~2,000. The third new technologies in BTFI is the use of EMCCDs for rapid and cyclically wavelength scanning thus mitigating the damaging effect of atmospheric variability through data acquisition. An additional important feature of the instrument is that it has two optical channels which allow for the simultaneous recording of the narrow-band, filtered image with the remaining (complementary) broad-band light. This avoids the uncertainties inherent in tunable filter imaging using a single detector. The system was designed to supply tunable filter imaging with a field-of-view of 3 arcmin on a side, sampled at 0.12" for direct Nasmyth seeing-limited area spectroscopy and for SAM's visitor instrument port for GLAO-fed area spectroscopy. The instrument has seen first light, as a SOAR visitor instrument. It is now in comissioning phase.Comment: accepted in PAS

    The circumstellar environment of T Tau S at high spatial and spectral resolution

    Full text link
    We have obtained the first high spatial (0.05'') and spectral (R~35000) resolution 2 micron spectrum of the T Tau S tight binary system using adaptive optics on the Keck II telescope. We have also obtained the first 3.8 and 4.7 micron images that resolve the three components of the T Tau multiple system, as well as new 1.6 and 2.2 micron images. Together with its very red near-infrared colors, the spectrum of T Tau Sb shows that this T Tauri star is extincted by a roughly constant extinction of Av~15 mag, which is probably the 0.7''x0.5'' circumbinary structure recently observed in absorption in the ultraviolet. T Tau Sa, which is also observed through this screen and is actively accreting, further possesses a small edge-on disk that is evidenced by warm (390 K), narrow overtone CO rovibrational absorption features in our spectrum. We find that T Tau Sa is most likely an intermediate-mass star surrounded by a semi-transparent 2-3 AU-radius disk whose asymmetries and short Keplerian rotation explain the large photometric variability of the source on relatively short timescales. We also show that molecular hydrogen emission exclusively arises from the gas that surrounds T Tau S and that its spatial and kinematic structure, while providing suggestive evidence for a jet-like structure, is highly complex.Comment: accepted for publication in the Astrophysical Journal; 41 pages, 10 figure

    F-8C adaptive flight control extensions

    Get PDF
    An adaptive concept which combines gain-scheduled control laws with explicit maximum likelihood estimation (MLE) identification to provide the scheduling values is described. The MLE algorithm was improved by incorporating attitude data, estimating gust statistics for setting filter gains, and improving parameter tracking during changing flight conditions. A lateral MLE algorithm was designed to improve true air speed and angle of attack estimates during lateral maneuvers. Relationships between the pitch axis sensors inherent in the MLE design were examined and used for sensor failure detection. Design details and simulation performance are presented for each of the three areas investigated

    Resolved Spectroscopy of Gravitationally-Lensed Galaxies: Recovering Coherent Velocity Fields in Sub-Luminous z~2-3 Galaxies

    Get PDF
    We present spatially-resolved dynamics for six strongly lensed star-forming galaxies at z=1.7-3.1, each enlarged by a linear magnification factor ~8. Using the Keck laser guide star AO system and the OSIRIS integral field unit spectrograph we resolve kinematic and morphological detail in our sample with an unprecedented fidelity, in some cases achieving spatial resolutions of ~100 pc. With one exception our sources have diameters ranging from 1-7 kpc, star formation rates of 2-40 Msun/yr (uncorrected for extinction) and dynamical masses of 10^(9.7-10.3) Msun. With this exquisite resolution we find that four of the six galaxies display coherent velocity fields consistent with a simple rotating disk model, which can only be recovered with the considerably improved spatial resolution and sampling from the combination of adaptive optics and strong gravitational lensing. Our model fits imply ratios for the systemic to random motion, V sin(i)/sigma, ranging from 0.5-1.3 and Toomre disk parameters Q<1. The large fraction of well-ordered velocity fields in our sample is consistent with data analyzed for larger, more luminous sources at this redshift. Our high resolution data further reveal that all six galaxies contain multiple giant star-forming HII regions whose resolved diameters are in the range 300 pc - 1.0 kpc, consistent with the Jeans length expected in the case of dispersion support. The density of star formation in these regions is ~100 times higher than observed in local spirals; such high values are only seen in the most luminous local starbursts. The global dynamics and demographics of star formation in these HII regions suggest that vigorous star formation is primarily governed by gravitational instability in primitive rotating disks.Comment: 18 pages, 8 figures, submitted to MNRA

    Astrometry with the Wide-Field InfraRed Space Telescope

    Get PDF
    The Wide-Field InfraRed Space Telescope (WFIRST) will be capable of delivering precise astrometry for faint sources over the enormous field of view of its main camera, the Wide-Field Imager (WFI). This unprecedented combination will be transformative for the many scientific questions that require precise positions, distances, and velocities of stars. We describe the expectations for the astrometric precision of the WFIRST WFI in different scenarios, illustrate how a broad range of science cases will see significant advances with such data, and identify aspects of WFIRST's design where small adjustments could greatly improve its power as an astrometric instrument.Comment: version accepted to JATI
    corecore