145 research outputs found

    Multicast outing protocols and architectures in mobile ad-hoc wireless networks

    Get PDF
    The basic philosophy of personal communication services is to provide user-to-user, location independent communication services. The emerging group communication wireless applications, such as multipoint data dissemination and multiparty conferencing tools have made the design and development of efficient multicast techniques in mobile ad-hoc networking environments a necessity and not just a desire. Multicast protocols in mobile adhoc networks have been an area of active research for the past few years. In this dissertation, protocols and architectures for supporting multicast services are proposed, analyzed and evaluated in mobile ad-hoc wireless networks. In the first chapter, the activities and recent advances are summarized in this work-in-progress area by identifying the main issues and challenges that multicast protocols are facing in mobile ad-hoc networking environments and by surveying several existing multicasting protocols. a classification of the current multicast protocols is presented, the functionality of the individual existing protocols is discussed, and a qualitative comparison of their characteristics is provided according to several distinct features and performance parameters. In the second chapter, a novel mobility-based clustering strategy that facilitates the support of multicast routing and mobility management is presented in mobile ad-hoc networks. In the proposed structure, mobile nodes are organized into nonoverlapping clusters which have adaptive variable-sizes according to their respective mobility. The mobility-based clustering (MBC) approach which is proposed uses combination of both physical and logical partitions of the network (i.e. geographic proximity and functional relation between nodes, such as mobility pattern etc.). In the third chapter, an entropy-based modeling framework for supporting and evaluating the stability is proposed in mobile ad-hoc wireless networks. The basic motivations of the proposed modeling approach stem from the commonality observed in the location uncertainty in mobile ad-hoc wireless networks and the concept of entropy. In the fourth chapter, a Mobility-based Hybrid Multicast Routing (MHMR) protocol suitable for mobile ad-hoc networks is proposed. The MHMR uses the MBC algorithm as the underlying structure. The main features that the proposed protocol introduces are the following: a) mobility based clustering and group based hierarchical structure, in order to effectively support the stability and scalability, b) group based (limited) mesh structure and forwarding tree concepts, in order to support the robustness of the mesh topologies which provides limited redundancy and the efficiency of tree forwarding simultaneously, and c) combination of proactive and reactive concepts which provide the low route acquisition delay of proactive techniques and the low overhead of reactive methods. In the fifth chapter, an architecture for supporting geomulticast services with high message delivery accuracy is presented in mobile ad-hoc wireless networks. Geomulticast is a specialized location-dependent multicasting technique, where messages are multicast to some specific user groups within a specific zone. An analytical framework which is used to evaluate the various geomulticast architectures and protocols is also developed and presented. The last chapter concludes the dissertation

    Internet connection method for mobile ad hoc wireless networks

    Get PDF
    In recent years, wireless networks with Internet services have become more and more popular. Technologies which integrate Internet and wireless networks have extended traditional Internet applications into a more flexible and dynamic environment. This research work investigates the technology that supports the connection between a Mobile Ad Hoc Wireless Network (MANET) and the Internet, which enables the current wireless Internet technologies to provide a ubiquitous wireless life style. With detailed analysis of the existing wireless Internet technologies and MANETs regarding their features and applications, the demand and lack of research work for an application to provide Internet connection to MANET is indicated. The primary difficulty for MANET and Internet connection is that the dynamic features of MANET do not suit the traditional connection methods used in infrastructure wireless networks. This thesis introduces new concept of the 'Gateway Awareness' (GAW) to the wireless devices in the MANET. GAW is a new routing protocol designed by the author of this thesis, at the University of Warwick. Based on GAW, an inclusive definition for the connection method, which supports the Internet connection and keeps the independency of routing in MANET, is addressed. Unlike other research work, this method supports the MANET and Internet communication in both directions. Furthermore, it explores possible ways of using the Internet as an extension for wireless communications. The GAW routing method is developed from destination sequenced distance vector (DSDV) routing protocol. However, it defines a layer of wireless nodes (known as GAWNs) with exclusive functions for the Internet connection task. The layer of GAWNs brings a new set of route update and route selection method. Simulations show that the GAW routing method provides quality Internet connection performance in different scenarios compared with other methods. In particular, the connection is completed with minimum effect on the independent MANET while the routing efficiency and accuracy is guaranteed

    Architecture and Protocols for Service and Application Deployment in Resource Aware Ubiquitous Environments

    Get PDF
    Realizing the potential of pervasive computing will be predicated upon the availability of a flexible, mobility-aware infrastructure and the technologies to support seamless service management, provisioning and delivery. Despite the advances in routing and media access control technologies, little progress has been made towards large-scale deployment of services and applications in pervasive and ubiquitous environments. The lack of a fixed infrastructure, coupled with the time-varying characteristics of the underlying network topology, make service delivery challenging. The goal of this research is to address the fundamental design issues of a service infrastructure for ubiquitous environments and provide a comprehensive solution which is robust, scalable, secure and takes into consideration node mobility and resource constraints. We discuss the main functionalities of the proposed architecture, describe the algorithms for registration and discovery and present a power-aware location-driven message forwarding algorithm to enable node interaction in this architecture. We also provide security schemes to ensure user privacy in this architecture. The proposed architecture was evaluated through theuse of simulations. The results show that the service architecture is scalable and robust, even when node mobility is high. The comparative analysis shows that our message forwarding algorithm consistently outperforms contemporary location-driven algorithms. Furthermore, thisresearch work was implemented as a proof-of-concept implementation and tested on a real world scenario

    TDMP-Reliable Target Driven and Mobility Prediction based Routing Protocol in Complex VANET

    Full text link
    Vehicle-to-everything (V2X) communication in the vehicular ad hoc network (VANET), an infrastructure-free mechanism, has emerged as a crucial component in the advanced Intelligent Transport System (ITS) for special information transmission and inter-vehicular communications. One of the main research challenges in VANET is the design and implementation of network routing protocols which manage to trigger V2X communication with the reliable end-to-end connectivity and efficient packet transmission. The organically changing nature of road transport vehicles poses a significant threat to VANET with respect to the accuracy and reliability of packet delivery. Therefore, a position-based routing protocol tends to be the predominant method in VANET as they overcome rapid changes in vehicle movements effectively. However, existing routing protocols have some limitations such as (i) inaccurate in high dynamic network topology, (ii) defective link-state estimation (iii) poor movement prediction in heterogeneous road layouts. In this paper, a target-driven and mobility prediction (TDMP) based routing protocol is therefore developed for high-speed mobility and dynamic topology of vehicles, fluctuant traffic flow and diverse road layouts in VANET. The primary idea in TDMP is that the destination target of a driver is included in the mobility prediction to assist the implementation of the routing protocol. Compared to existing geographic routing protocols which mainly greedily forward the packet to the next-hop based on its current position and partial road layout, TDMP is developed to enhance the packet transmission with the consideration of the estimation of inter-vehicles link status, and the prediction of vehicle positions dynamically in fluctuant mobility and global road layout.Comment: 35 pages,16 Figure

    Internet connection method for mobile ad hoc wireless networks

    Get PDF
    In recent years, wireless networks with Internet services have become more and more popular. Technologies which integrate Internet and wireless networks have extended traditional Internet applications into a more flexible and dynamic environment. This research work investigates the technology that supports the connection between a Mobile Ad Hoc Wireless Network (MANET) and the Internet, which enables the current wireless Internet technologies to provide a ubiquitous wireless life style. With detailed analysis of the existing wireless Internet technologies and MANETs regarding their features and applications, the demand and lack of research work for an application to provide Internet connection to MANET is indicated. The primary difficulty for MANET and Internet connection is that the dynamic features of MANET do not suit the traditional connection methods used in infrastructure wireless networks. This thesis introduces new concept of the 'Gateway Awareness' (GAW) to the wireless devices in the MANET. GAW is a new routing protocol designed by the author of this thesis, at the University of Warwick. Based on GAW, an inclusive definition for the connection method, which supports the Internet connection and keeps the independency of routing in MANET, is addressed. Unlike other research work, this method supports the MANET and Internet communication in both directions. Furthermore, it explores possible ways of using the Internet as an extension for wireless communications. The GAW routing method is developed from destination sequenced distance vector (DSDV) routing protocol. However, it defines a layer of wireless nodes (known as GAWNs) with exclusive functions for the Internet connection task. The layer of GAWNs brings a new set of route update and route selection method. Simulations show that the GAW routing method provides quality Internet connection performance in different scenarios compared with other methods. In particular, the connection is completed with minimum effect on the independent MANET while the routing efficiency and accuracy is guaranteed.EThOS - Electronic Theses Online ServiceUniversities UKUniversity of WarwickGBUnited Kingdo

    A Learning-based Approach to Exploiting Sensing Diversity in Performance Critical Sensor Networks

    Get PDF
    Wireless sensor networks for human health monitoring, military surveillance, and disaster warning all have stringent accuracy requirements for detecting and classifying events while maximizing system lifetime. to meet high accuracy requirements and maximize system lifetime, we must address sensing diversity: sensing capability differences among both heterogeneous and homogeneous sensors in a specific deployment. Existing approaches either ignore sensing diversity entirely and assume all sensors have similar capabilities or attempt to overcome sensing diversity through calibration. Instead, we use machine learning to take advantage of sensing differences among heterogeneous sensors to provide high accuracy and energy savings for performance critical applications.;In this dissertation, we provide five major contributions that exploit the nuances of specific sensor deployments to increase application performance. First, we demonstrate that by using machine learning for event detection, we can explore the sensing capability of a specific deployment and use only the most capable sensors to meet user accuracy requirements. Second, we expand our diversity exploiting approach to detect multiple events using a distributed manner. Third, we address sensing diversity in body sensor networks, providing a practical, user friendly solution for activity recognition. Fourth, we further increase accuracy and energy savings in body sensor networks by sharing sensing resources among neighboring body sensor networks. Lastly, we provide a learning-based approach for forwarding event detection decisions to data sinks in an environment with mobile sensor nodes

    LVMM: The Localized Vehicular Multicast Middleware - a Framework for Ad Hoc Inter-Vehicles Multicast Communications

    Get PDF
    This thesis defines a novel semantic for multicast in vehicular ad hoc networks (VANETs) and it defines a middleware, the Localized Vehicular Multicast Middleware (LVMM) that enables minimum cost, source-based multicast communications in VANETs. The middleware provides support to find vehicles suitable to sustain multicast communications, to maintain multicast groups, and to execute a multicast routing protocol, the Vehicular Multicast Routing Protocol (VMRP), that delivers messages of multicast applications to all the recipients utilizing a loop-free, minimum cost path from each source to all the recipients. LVMM does not require a vehicle to know all other members: only knowledge of directly reachable nodes is required to perform the source-based routing
    • …
    corecore