3,690 research outputs found

    Multilayer optical learning networks

    Get PDF
    A new approach to learning in a multilayer optical neural network based on holographically interconnected nonlinear devices is presented. The proposed network can learn the interconnections that form a distributed representation of a desired pattern transformation operation. The interconnections are formed in an adaptive and self-aligning fashioias volume holographic gratings in photorefractive crystals. Parallel arrays of globally space-integrated inner products diffracted by the interconnecting hologram illuminate arrays of nonlinear Fabry-Perot etalons for fast thresholding of the transformed patterns. A phase conjugated reference wave interferes with a backward propagating error signal to form holographic interference patterns which are time integrated in the volume of a photorefractive crystal to modify slowly and learn the appropriate self-aligning interconnections. This multilayer system performs an approximate implementation of the backpropagation learning procedure in a massively parallel high-speed nonlinear optical network

    What is the significance of neural networks for AI

    Get PDF

    Adaptive pattern recognition by mini-max neural networks as a part of an intelligent processor

    Get PDF
    In this decade and progressing into 21st Century, NASA will have missions including Space Station and the Earth related Planet Sciences. To support these missions, a high degree of sophistication in machine automation and an increasing amount of data processing throughput rate are necessary. Meeting these challenges requires intelligent machines, designed to support the necessary automations in a remote space and hazardous environment. There are two approaches to designing these intelligent machines. One of these is the knowledge-based expert system approach, namely AI. The other is a non-rule approach based on parallel and distributed computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union of AI and NI is the solution to the problem stated above. The NI segment of this unit extracts features automatically by applying Cauchy simulated annealing to a mini-max cost energy function. The feature discovered by NI can then be passed to the AI system for future processing, and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm exactly, and can provide the context knowledge base as the constraints of neurocomputing. The mini-max cost function that solves the unknown feature can furthermore give us a top-down architectural design of neural networks by means of Taylor series expansion of the cost function. A typical mini-max cost function consists of the sample variance of each class in the numerator, and separation of the center of each class in the denominator. Thus, when the total cost energy is minimized, the conflicting goals of intraclass clustering and interclass segregation are achieved simultaneously

    The stability and attractivity of neural associative memories.

    Get PDF
    Han-bing Ji.Thesis (Ph.D.)--Chinese University of Hong Kong, 1996.Includes bibliographical references (p. 160-163).Microfiche. Ann Arbor, Mich.: UMI, 1998. 2 microfiches ; 11 x 15 cm

    Unipolar terminal-attractor based neural associative memory with adaptive threshold

    Get PDF
    A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state

    Vision based context categorization for all-terrain robot

    Get PDF
    Dissertation presented at the Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa to obtain the Master degree in Electrical and Computer Engineering.This dissertation presents a model to allow an autonomous robot to incrementally learn associations between the global context in which it is immersed and the most important behaviours used by the robot in that specific context. In a way, the robot learns what opportunities can a given environment provide in terms of behaviour (e.g.,obstacle avoidance, trail following). The proposed model aims at helping the robot prioritising its perceptual resources, and consequently contributes to improve its visual capabilities or skills. In order to capture the global context, a gist mechanism is used to obtain a global descriptor of the scene. The focus on affordances,rather than on objects, i.e., associating context with behaviour instead on the objects that activate the behaviours, enables a self-supervised learning mechanism without assuming the existence of symbolic object representations, thus facilitating the integration of the model on a developmental framework. The focus on affordances also contributes to our understanding on the role of sensorimotor coordination in the organisation of adaptive behaviour. Positive results are obtained with a physical experiment in a natural environment, where a handheld camera was transported as if it was being carried by an actual robot with a set of predefined behaviours, such as obstacle avoidance, trail following, and wandering

    Stability in N-Layer recurrent neural networks

    Get PDF
    Starting with the theory developed by Hopfield, Cohen-Grossberg and Kosko, the study of associative memories is extended to N - layer re-current neural networks. The stability of different multilayer networks is demonstrated under specified bounding hypotheses. The analysis involves theorems for the additive as well as the multiplicative models for continuous and discrete N - layer networks. These demonstrations are based on contin-uous and discrete Liapunov theory. The thesis develops autoassociative and heteroassociative memories. It points out the link between all recurrent net-works of this type. The discrete case is analyzed using the threshold signal function as the activation function. A general approach for studying the sta-bility and convergence of the multilayer recurrent networks is developed
    • …
    corecore