9,615 research outputs found

    Adaptive versus Static Security in the UC Model

    Get PDF
    We show that for certain class of unconditionally secure protocols and target functionalities, static security implies adaptive security in the UC model. Similar results were previously only known for models with weaker security and/or composition guarantees. The result is, for instance, applicable to a wide range of protocols based on secret sharing. It ``explains\u27\u27 why an often used proof technique for such protocols works, namely where the simulator runs in its head a copy of the honest players using dummy inputs and generates a protocol execution by letting the dummy players interact with the adversary. When a new player PiP_i is corrupted, the simulator adjusts the state of its dummy copy of PiP_i to be consistent with the real inputs and outputs of PiP_i and gives the state to the adversary. Our result gives a characterisation of the cases where this idea will work to prove adaptive security. As a special case, we use our framework to give the first proof of adaptive security of the seminal BGW protocol in the UC framework

    Adaptive Robust Optimization with Dynamic Uncertainty Sets for Multi-Period Economic Dispatch under Significant Wind

    Full text link
    The exceptional benefits of wind power as an environmentally responsible renewable energy resource have led to an increasing penetration of wind energy in today's power systems. This trend has started to reshape the paradigms of power system operations, as dealing with uncertainty caused by the highly intermittent and uncertain wind power becomes a significant issue. Motivated by this, we present a new framework using adaptive robust optimization for the economic dispatch of power systems with high level of wind penetration. In particular, we propose an adaptive robust optimization model for multi-period economic dispatch, and introduce the concept of dynamic uncertainty sets and methods to construct such sets to model temporal and spatial correlations of uncertainty. We also develop a simulation platform which combines the proposed robust economic dispatch model with statistical prediction tools in a rolling horizon framework. We have conducted extensive computational experiments on this platform using real wind data. The results are promising and demonstrate the benefits of our approach in terms of cost and reliability over existing robust optimization models as well as recent look-ahead dispatch models.Comment: Accepted for publication at IEEE Transactions on Power System

    Simulatable security for quantum protocols

    Full text link
    The notion of simulatable security (reactive simulatability, universal composability) is a powerful tool for allowing the modular design of cryptographic protocols (composition of protocols) and showing the security of a given protocol embedded in a larger one. Recently, these methods have received much attention in the quantum cryptographic community. We give a short introduction to simulatable security in general and proceed by sketching the many different definitional choices together with their advantages and disadvantages. Based on the reactive simulatability modelling of Backes, Pfitzmann and Waidner we then develop a quantum security model. By following the BPW modelling as closely as possible, we show that composable quantum security definitions for quantum protocols can strongly profit from their classical counterparts, since most of the definitional choices in the modelling are independent of the underlying machine model. In particular, we give a proof for the simple composition theorem in our framework.Comment: Added proof of combination lemma; added comparison to the model of Ben-Or, Mayers; minor correction

    AMaĻ‡oSā€”Abstract Machine for Xcerpt

    Get PDF
    Web query languages promise convenient and efficient access to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for effective and convenient query authoring, particularly tailored to versatile access to data in different Web formats such as XML or RDF. However, so far it lacks an efficient implementation to supplement the convenient language features. AMaĻ‡oS is an abstract machine implementation for Xcerpt that aims at efficiency and ease of deployment. It strictly separates compilation and execution of queries: Queries are compiled once to abstract machine code that consists in (1) a code segment with instructions for evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints derived by the query compilation. This article summarizes the motivation and principles behind AMaĻ‡oS and discusses how its current architecture realizes these principles
    • ā€¦
    corecore