624 research outputs found

    On Scalable Video Streaming over Cognitive Radio Cellular and Ad Hoc Networks

    Full text link
    Video content delivery over wireless networks is expected to grow drastically in the coming years. In this paper, we investigate the challenging problem of video over cognitive radio (CR) networks. Although having high potential, this problem brings about a new level of technical challenges. After reviewing related work, we first address the problem of video over infrastructure-based CR networks, and then extend the problem to video over non-infrastructure-based ad hoc CR networks. We present formulations of cross-layer optimization problems as well as effective algorithms to solving the problems. The proposed algorithms are analyzed with respect to their optimality and validate with simulations

    A low complexity resource allocation algorithm for multicast service delivery in OFDMA networks

    Get PDF
    Allocating and managing radio resources to multicast transmissions in Orthogonal Frequency-Division Multiple Access (OFDMA) systems is the challenging research issue addressed by this paper. A subgrouping technique, which divides the subscribers into subgroups according to the experienced channel quality, is considered to overcome the throughput limitations of conventional multicast data delivery schemes. A low complexity algorithm, designed to work with different resource allocation strategies, is also proposed to reduce the computational complexity of the subgroup formation problem. Simulation results, carried out by considering the Long Term Evolution (LTE) system based on OFDMA, testify the effectiveness of the proposed solution, which achieves a near-optimal performance with a limited computational load for the system

    NCRAWL: Network Coding for Rate Adaptive Wireless Links

    Full text link
    Intersession network coding (NC) can provide significant performance benefits via mixing packets at wireless routers; these benefits are especially pronounced when NC is applied in conjunction with intelligent link scheduling. NC however imposes certain processing operations, such as encoding, decoding, copying and storage. When not utilized carefully, all these operations can induce tremendous processing overheads in practical, wireless, multi-rate settings. Our measurements with prior NC implementations suggest that such processing operations severely degrade the router throughput, especially at high bit rates. Motivated by this, we design {\bf NCRAWL}, a Network Coding framework for Rate Adaptive Wireless Links. The design of NCRAWL facilitates low overhead NC functionalities, thereby effectively approaching the theoretically expected capacity benefits of joint NC and scheduling. We implement and evaluate NCRAWL on a wireless testbed. Our experiments demonstrate that NCRAWL meets the theoretical predicted throughput gain while requiring much less CPU processing, compared to related frameworks

    QoS Provisioning for Multimedia Transmission in Cognitive Radio Networks

    Full text link
    In cognitive radio (CR) networks, the perceived reduction of application layer quality of service (QoS), such as multimedia distortion, by secondary users may impede the success of CR technologies. Most previous work in CR networks ignores application layer QoS. In this paper we take an integrated design approach to jointly optimize multimedia intra refreshing rate, an application layer parameter, together with access strategy, and spectrum sensing for multimedia transmission in a CR system with time varying wireless channels. Primary network usage and channel gain are modeled as a finite state Markov process. With channel sensing and channel state information errors, the system state cannot be directly observed. We formulate the QoS optimization problem as a partially observable Markov decision process (POMDP). A low complexity dynamic programming framework is presented to obtain the optimal policy. Simulation results show the effectiveness of the proposed scheme

    Joint Relaying and Spatial Sharing Multicast Scheduling for mmWave Networks

    Full text link
    Millimeter-wave (mmWave) communication plays a vital role to efficiently disseminate large volumes of data in beyond-5G networks. Unfortunately, the directionality of mmWave communication significantly complicates efficient data dissemination, particularly in multicasting, which is gaining more and more importance in emerging applications (e.g., V2X, public safety). While multicasting for systems operating at lower frequencies (i.e., sub-6GHz) has been extensively studied, they are sub-optimal for mmWave systems as mmWave has significantly different propagation characteristics, i.e., using the directional transmission to compensate for the high path loss and thus promoting spectrum sharing. In this paper, we propose novel multicast scheduling algorithms by jointly exploiting relaying and spatial sharing gains while aiming to minimize the multicast completion time. We first characterize the min-time mmWave multicasting problem with a comprehensive model and formulate it with an integer linear program (ILP). We further design a practical and scalable distributed algorithm named mmDiMu, based on gradually maximizing the transmission throughput over time. Finally, we carry out validation through extensive simulations in different scales and the results show that mmDiMu significantly outperforms conventional algorithms with around 95% reduction on multicast completion time.Comment: 11 page

    Cross-layer schemes for performance optimization in wireless networks

    Get PDF
    Wireless networks are undergoing rapid progress and inspiring numerous applications. As the application of wireless networks becomes broader, they are expected to not only provide ubiquitous connectivity, but also support end users with certain service guarantees. End-to-end delay is an important Quality of Service (QoS) metric in multihop wireless networks. This dissertation addresses how to minimize end-to-end delay through joint optimization of network layer routing and link layer scheduling. Two cross-layer schemes, a loosely coupled cross-layer scheme and a tightly coupled cross-layer scheme, are proposed. The two cross-layer schemes involve interference modeling in multihop wireless networks with omnidirectional antenna. In addition, based on the interference model, multicast schedules are optimized to minimize the total end-to-end delay. Throughput is another important QoS metric in wireless networks. This dissertation addresses how to leverage the spatial multiplexing function of MIMO links to improve wireless network throughput. Wireless interference modeling of a half-duplex MIMO node is presented. Based on the interference model, routing, spatial multiplexing, and scheduling are jointly considered in one optimization model. The throughput optimization problem is first addressed in constant bit rate networks and then in variable bit rate networks. In a variable data rate network, transmitters can use adaptive coding and modulation schemes to change their data rates so that the data rates are supported by the Signal to Noise and Interference Ratio (SINR). The problem of achieving maximum throughput in a millimeter-wave wireless personal area network is studied --Abstract, page iv

    Radio resource allocation algorithms for multicast OFDM systems

    Get PDF
    Mención Internacional en el título de doctorVideo services have become highly demanded in mobile networks leading to an unprecedented traffic growth. It is expected that traffic from wireless and mobile devices will account for nearly 70 percent of total IP traffic by the year 2020, and the video services will account for nearly 75 percent of mobile data traffic by 2022. Multicast transmission is one of the key enablers towards a more spectral and energy efficient distribution of multimedia content in current and envisaged mobile networks. It is worth noting that multicast is a mechanism that efficiently delivers the same content to many users, not only focusing on video broadcasting, but also distributing many other media, such as software updates, weather forecast or breaking news. Although multicast services are available in Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, new improvements are needed in some areas to handle the demands expected in the near future. Resource allocation techniques for multicast services are one of the main challenging issues, since it is required the development of novel schemes to meet the demands of their evolution towards the next generation. Most multicast techniques adopt rather conservative strategies that select a very robust modulation and coding scheme (MCS), whose characteristics are determined by the propagation conditions experienced by the worst user in the group in order to ensure that all users in a multicast group are able to correctly decode the received data. Obviously, this robustness comes at the prize of a low spectral efficiency. This thesis presents an exhaustive study of broadcast/multicast technology for current mobile networks, especially focusing on the scheduling and resource allocation (SRA) strategies to maximize the potential benefits that multicast transmissions imply on the spectral efficiency. Based on that issue, some contributions have been made to the state of the art in the radio resource management (RRM) for current and beyond mobile multicast services. • In the frame of LTE/LTE-A, the evolved multimedia broadcast and multicast service (eMBMS) shares the physical layer resources with the unicast transmission mode (at least up to Release 12). Consequently, the time allocation to multicast transmission is limited to a maximum of a 60 percent, and the remaining subframes (at least 40 percent) are reserved for unicast transmissions. With the aim of achieving the maximum aggregated data rate (ADR) among the multicast users, we have implemented several innovative SRA schemes that combine the allocation of multicast and unicast resources in the LTE/LTE-A frame, guaranteeing the prescribed quality of service (QoS) requirements for every user. • In the specific context of wideband communication systems, the selection of the multicast MCS has often relied on the use of wideband channel quality indicators (CQIs), providing rather imprecise information regarding the potential capacity of the multicast channel. Only recently has the per-subband CQI been used to improve the spectral efficiency of the system without compromising the link robustness. We have proposed novel subband CQI-based multicast SRA strategies that, relying on the selection of more spectrally efficient transmission modes, lead to increased data rates while still being able to fulfill prescribed QoS metrics. • Mobile broadcast/multicast video services require effective and low complexity SRA strategies. We have proposed an SRA strategy based on multicast subgrouping and the scalable video coding (SVC) technique for multicast video delivery. This scheme focuses on reducing the search space of solutions and optimizes the ADR. The results in terms of ADR, spectral efficiency, and fairness among multicast users, along with the low complexity of the algorithm, show that this new scheme is adequate for real systems. These contributions are intended to serve as a reference that motivate ongoing and future investigation in the challenging field of RRM for broadcast/ multicast services in next generation mobile networks.La demanda de servicios de vídeo en las redes móviles ha sufrido un incremento exponencial en los últimos años, lo que a su vez ha desembocado en un aumento sin precedentes del tráfico de datos. Se espera que antes del año 2020, el trafico debido a dispositivos móviles alcance cerca del 70 por ciento del tráfico IP total, mientras que se prevé que los servicios de vídeo sean prácticamente el 75 por ciento del tráfico de datos en las redes móviles hacia el 2022. Las transmisiones multicast son una de las tecnologías clave para conseguir una distribución más eficiente, tanto espectral como energéticamente, del contenido multimedia en las redes móviles actuales y futuras. Merece la pena reseñar que el multicast es un mecanismo de entrega del mismo contenido a muchos usuarios, que no se enfoca exclusivamente en la distribución de vídeo, sino que también permite la distribución de otros muchos contenidos, como actualizaciones software, información meteorológica o noticias de última hora. A pesar de que los servicios multicast ya se encuentran disponibles en las redes Long Term Evolution (LTE) y LTE-Advanced (LTE-A), la mejora en algunos ámbitos resulta necesaria para manejar las demandas que se prevén a corto plazo. Las técnicas de asignación de recursos para los servicios multicast suponen uno de los mayores desafíos, ya que es necesario el desarrollo de nuevos esquemas que nos permitan acometer las exigencias que supone su evolución hacia la próxima generación. La mayor parte de las técnicas multicast adoptan estrategias conservadoras, seleccionando esquemas de modulación y codificación (MCS) impuestos por las condiciones de propagación que experimenta el usuario del grupo con peor canal, para así asegurar que todos los usuarios pertenecientes al grupo multicast sean capaces de decodificar correctamente los datos recibidos. Como resulta obvio, la utilización de esquemas tan robustos conlleva el precio de sufrir una baja eficiencia espectral. Esta tesis presenta un exhaustivo estudio de la tecnología broadcast/ multicast para las redes móviles actuales, que se centra especialmente en las estrategias de asignación de recursos (SRA), cuyo objetivo es maximizar los beneficios que la utilización de transmisiones multicast potencialmente implica en términos de eficiencia espectral. A partir de dicho estudio, hemos realizado varias contribuciones al estado del arte en el ámbito de la gestión de recursos radio (RRM) para los servicios multicast, aplicables en las redes móviles actuales y futuras. • En el marco de LTE/LTE-A, el eMBMS comparte los recursos de la capa física con las transmisiones unicast (al menos hasta la revisión 12). Por lo tanto, la disponibilidad temporal de las transmisiones multicast está limitada a un máximo del 60 por ciento, reservándose las subtramas restantes (al menos el 40 por ciento) para las transmisiones unicast. Con el objetivo de alcanzar la máxima tasa total de datos (ADR) entre los usuarios multicast, hemos implementado varios esquemas innovadores de SRA que combinan la asignación de los recursos multicast y unicast de la trama LTE/LTE-A, garantizando los requisitos de QoS a cada usuario. • En los sistemas de comunicaciones de banda ancha, la selección del MCS para transmisiones multicast se basa habitualmente en la utilización de CQIs de banda ancha, lo que proporciona información bastante imprecisa acerca de la capacidad potencial del canal multicast. Recientemente se ha empezado a utilizar el CQI por subbanda para mejorar la eficiencia espectral del sistema sin comprometer la robustez de los enlaces. Hemos propuesto nuevas estrategias para SRA multicast basadas en el CQI por subbanda que, basándose en la selección de los modos de transmisión con mayor eficiencia espectral, conducen a mejores tasas de datos, a la vez que permiten cumplir los requisitos de QoS. • Los servicios móviles de vídeo broadcast/multicast precisan estrategias eficientes de SRA con baja complejidad. Hemos propuesto una estrategia de SRA basada en subgrupos multicast y la técnica de codificación de vídeo escalable (SVC) para la difusión de vídeo multicast, la cual se centra en reducir el espacio de búsqueda de soluciones y optimizar el ADR. Los resultados obtenidos en términos de ADR, eficiencia espectral y equidad entre los usuarios multicast, junto con la baja complejidad del algoritmo, ponen de manifiesto que el esquema propuesto es adecuado para su implantación en sistemas reales. Estas contribuciones pretenden servir de referencia que motive la investigación actual y futura en el interesante ámbito de RRM para los servicios broadcast/multicast en las redes móviles de próxima generación.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Atilio Manuel Da Silva Gameiro.- Secretario: Víctor Pedro Gil Jiménez.- Vocal: María de Diego Antó

    Cost-optimal caching for D2D networks with user mobility: Modeling, analysis, and computational approaches

    Full text link
    Caching popular files at user equipments (UEs) provides an effective way to alleviate the burden of the backhaul networks. Generally, popularity-based caching is not a system-wide optimal strategy, especially for user mobility scenarios. Motivated by this observation, we consider optimal caching with presence of mobility. A cost-optimal caching problem (COCP) for device-to-device (D2D) networks is modelled, in which the impact of user mobility, cache size, and total number of encoded segments are all accounted for. Compared with the related studies, our investigation guarantees that the collected segments are non-overlapping, takes into account the cost of downloading from the network, and provides a rigorous problem complexity analysis. The hardness of the problem is proved via a reduction from the satisfiability problem. Next, a lower-bounding function of the objective function is derived. By the function, an approximation of COCP (ACOCP) achieving linearization is obtained, which features two advantages. First, the ACOCP approach can use an off-the-shelf integer linear programming algorithm to obtain the global optimal solution, and it can effectively deliver solutions for small-scale and mediumscale system scenarios. Second, and more importantly, based on the ACOCP approach, one can derive the lower bound of global optimum of COCP, thus enabling performance benchmarking of any suboptimal algorithm. To tackle large scenarios with low complexity, we first prove that the optimal caching placement of one user, giving other users' caching placements, can be derived in polynomial time. Then, based on this proof, a mobility aware user-by-user (MAUU) algorithm is developed. Simulation results verify the effectivenesses of the two approaches by comparing them to the lower bound of global optimum and conventional caching algorithms

    Opportunistic Routing Metrics: A Timely One-Stop Tutorial Survey

    Full text link
    High-speed, low latency, and heterogeneity features of 5G, as the common denominator of many emerging and classic wireless applications, have put wireless technology back in the spotlight. Continuous connectivity requirement in low-power and wide-reach networks underlines the need for more efficient routing over scarce wireless resources, in multi-hp scenarios. In this regard, Opportunistic Routing (OR), which utilizes the broadcast nature of wireless media to provide transmission cooperation amongst a selected number of overhearing nodes, has become more promising than ever. Crucial to the overall network performance, which nodes to participate and where they stand on the transmission-priority hierarchy, are decided by user-defined OR metrics embedded in OR protocols. Therefore, the task of choosing or designing an appropriate OR metric is a critical one. The numerousness, proprietary notations, and the objective variousness of OR metrics can cause the interested researcher to lose insight and become overwhelmed, making the metric selection or design effort-intensive. While there are not any comprehensive OR metrics surveys in the literature, those who partially address the subject are non-exhaustive and lacking in detail. Furthermore, they offer limited insight regarding related taxonomy and future research recommendations. In this paper, starting with a custom tutorial with a new look to OR and OR metrics, we devise a new framework for OR metric design. Introducing a new taxonomy enables us to take a structured, investigative, and comparative approach to OR metrics, supported by extensive simulations. Exhaustive coverage of OR metrics, formulated in a unified notation, is presented with sufficient details. Self-explanatory, easy-to-grasp, and visual-friendly quick references are provided, which can be used independently from the rest of the paper.Comment: 41 Pages, 28 figure

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed
    • …
    corecore