757 research outputs found

    Adaptive Transmit Diversity with Quadrant Phase Constraining Feedback

    Get PDF
    An adaptive transmit scheme with quadrant phase constraining feedback is proposed in this paper. With simple linear operations at both transmitter and receiver, the proposed algorithm can achieve better system performances with only 2M- 2 bits of feedback information for systems with M transmit antennas. Theoretical performance bounds of the proposed transmit diversity scheme are derived. Simulation examples and theoretical analyses show that the proposed transmit diversity scheme outperforms not only the conventional open-loop transmit diversity techniques, but also some closed-loop transmit diversity techniques with more information transmitted in the feedback channel

    Hierarchical modulation with signal space and transmit diversity in Nakagami-m fading channel.

    Get PDF
    M. Sc. Eng. University of KwaZulu-Natal 2013.Hierarchical modulation (HM) is a promising scheme for wireless image and video transmission, exploiting the benefits of unequal error protection to ensure enhanced system performance. However, there is a limiting factor to the benefits of using only hierarchy to improve bit error rate (BER) performance of a transmission system. Diversity, namely signal space diversity (SSD) and Alamouti transmit diversity (ATD), can be introduced to improve BER performance results for HM systems. This dissertation presents the BER analysis of hierarchically modulated QAM with SSD and using maximal ratio combining (MRC) to retrieve the transmitted symbol from receiver antennas. In addition, the study includes the BER analysis of an identical system in an ATD scheme employing two transmit antennas and receiver antennas with MRC. SSD comprises of two fundamental stages: constellation rotation and component interleaving. The angle at which the constellation is rotated can affect the performance of the system. In the past, the rotation angle is determined based on a design criterion which maximizes the diversity order by minimizing the Euclidean square product or, alternatively, minimizes an SER expression. In this dissertation, a simple method for determining a rotation angle at which system performance is optimal for hierarchical constellations is presented. Previously, the BER analysis for HM involves an intricate approach where the probability of an error occurring is determined by considering the probability of a transmitted symbol exceeding past a set decision boundary. This dissertation presents the Nearest Neighbor (NN) union bound approach for determining an accurate approximation of the BER of an HM system with SSD. This method of analysis is later extended for an ATD scheme employing HM with SSD. Although introducing diversity elevates the system performance constraints on HM, it does so at the cost of detection complexity. To address this issue, a reduced complexity maximum-likelihood (ML) based detector is also proposed. While the conventional ML detector performs an exhaustive search to find the minimum Euclidean distance between the received symbol and all possible modulated symbols, the proposed detector only considers the nearest neighbors of the received symbol. By reducing the number of comparisons, a complexity reduction of 51.43% between the proposed detector and the optimal detector for 16-QAM is found

    Device-to-Device Communication and Multihop Transmission for Future Cellular Networks

    Get PDF
    The next generation wireless networks i.e. 5G aim to provide multi-Gbps data traffic, in order to satisfy the increasing demand for high-definition video, among other high data rate services, as well as the exponential growth in mobile subscribers. To achieve this dramatic increase in data rates, current research is focused on improving the capacity of current 4G network standards, based on Long Term Evolution (LTE), before radical changes are exploited which could include acquiring additional/new spectrum. The LTE network has a reuse factor of one; hence neighbouring cells/sectors use the same spectrum, therefore making the cell edge users vulnerable to inter-cell interference. In addition, wireless transmission is commonly hindered by fading and pathloss. In this direction, this thesis focuses on improving the performance of cell edge users in LTE and LTE-Advanced (LTE-A) networks by initially implementing a new Coordinated Multi-Point (CoMP) algorithm to mitigate cell edge user interference. Subsequently Device-to-Device (D2D) communication is investigated as the enabling technology for maximising Resource Block (RB) utilisation in current 4G and emerging 5G networks. It is demonstrated that the application, as an extension to the above, of novel power control algorithms, to reduce the required D2D TX power, and multihop transmission for relaying D2D traffic, can further enhance network performance. To be able to develop the aforementioned technologies and evaluate the performance of new algorithms in emerging network scenarios, a beyond-the-state-of-the-art LTE system-level simulator (SLS) was implemented. The new simulator includes Multiple-Input Multiple-Output (MIMO) antenna functionalities, comprehensive channel models (such as Wireless World initiative New Radio II i.e. WINNER II) and adaptive modulation and coding schemes to accurately emulate the LTE and LTE-A network standards. Additionally, a novel interference modelling scheme using the ‘wrap around’ technique was proposed and implemented that maintained the topology of flat surfaced maps, allowing for use with cell planning tools while obtaining accurate and timely results in the SLS compared to the few existing platforms. For the proposed CoMP algorithm, the adaptive beamforming technique was employed to reduce interference on the cell edge UEs by applying Coordinated Scheduling (CoSH) between cooperating cells. Simulation results show up to 2-fold improvement in terms of throughput, and also shows SINR gain for the cell edge UEs in the cooperating cells. Furthermore, D2D communication underlaying the LTE network (and future generation of wireless networks) was investigated. The technology exploits the proximity of users in a network to achieve higher data rates with maximum RB utilisation (as the technology reuses the cellular RB simultaneously), while taking some load off the Evolved Node B (eNB) i.e. by direct communication between User Equipment (UE). Simulation results show that the proximity and transmission power of D2D transmission yields high performance gains for a D2D receiver, which was demonstrated to be better than that of cellular UEs with better channel conditions or in close proximity to the eNB in the network. The impact of interference from the simultaneous transmission however impedes the achievable data rates of cellular UEs in the network, especially at the cell edge. Thus, a power control algorithm was proposed to mitigate the impact of interference in the hybrid network (network consisting of both cellular and D2D UEs). It was implemented by setting a minimum SINR threshold so that the cellular UEs achieve a minimum performance, and equally a maximum SINR threshold to establish fairness for the D2D transmission as well. Simulation results show an increase in the cell edge throughput and notable improvement in the overall SINR distribution of UEs in the hybrid network. Additionally, multihop transmission for D2D UEs was investigated in the hybrid network: traditionally, the scheme is implemented to relay cellular traffic in a homogenous network. Contrary to most current studies where D2D UEs are employed to relay cellular traffic, the use of idle nodes to relay D2D traffic was implemented uniquely in this thesis. Simulation results show improvement in D2D receiver throughput with multihop transmission, which was significantly better than that of the same UEs performance with equivalent distance between the D2D pair when using single hop transmission

    Symbol-level and Multicast Precoding for Multiuser Multiantenna Downlink: A State-of-the-art, Classification and Challenges

    Get PDF
    Precoding has been conventionally considered as an effective means of mitigating or exploiting the interference in the multiantenna downlink channel, where multiple users are simultaneously served with independent information over the same channel resources. The early works in this area were focused on transmitting an individual information stream to each user by constructing weighted linear combinations of symbol blocks (codewords). However, more recent works have moved beyond this traditional view by: i) transmitting distinct data streams to groups of users and ii) applying precoding on a symbol-per-symbol basis. In this context, the current survey presents a unified view and classification of precoding techniques with respect to two main axes: i) the switching rate of the precoding weights, leading to the classes of block-level and symbol-level precoding, ii) the number of users that each stream is addressed to, hence unicast, multicast, and broadcast precoding. Furthermore, the classified techniques are compared through representative numerical results to demonstrate their relative performance and uncover fundamental insights. Finally, a list of open theoretical problems and practical challenges are presented to inspire further research in this area

    UNDERWATER COMMUNICATIONS WITH ACOUSTIC STEGANOGRAPHY: RECOVERY ANALYSIS AND MODELING

    Get PDF
    In the modern warfare environment, communication is a cornerstone of combat competence. However, the increasing threat of communications-denied environments highlights the need for communications systems with low probability of intercept and detection. This is doubly true in the subsurface environment, where communications and sonar systems can reveal the tactical location of platforms and capabilities, subverting their covert mission set. A steganographic communication scheme that leverages existing technologies and unexpected data carriers is a feasible means of increasing assurance of communications, even in denied environments. This research works toward a covert communication system by determining and comparing novel symbol recovery schemes to extract data from a signal transmitted under a steganographic technique and interfered with by a simulated underwater acoustic channel. We apply techniques for reliably extracting imperceptible information from unremarkable acoustic events robust to the variability of the hostile operating environment. The system is evaluated based on performance metrics, such as transmission rate and bit error rate, and we show that our scheme is sufficient to conduct covert communications through acoustic transmissions, though we do not solve the problems of synchronization or equalization.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    On the Impact of Phase Noise in Communication Systems –- Performance Analysis and Algorithms

    Get PDF
    The mobile industry is preparing to scale up the network capacity by a factor of 1000x in order to cope with the staggering growth in mobile traffic. As a consequence, there is a tremendous pressure on the network infrastructure, where more cost-effective, flexible, high speed connectivity solutions are being sought for. In this regard, massive multiple-input multiple-output (MIMO) systems, and millimeter-wave communication systems are new physical layer technologies, which promise to facilitate the 1000 fold increase in network capacity. However, these technologies are extremely prone to hardware impairments like phase noise caused by noisy oscillators. Furthermore, wireless backhaul networks are an effective solution to transport data by using high-order signal constellations, which are also susceptible to phase noise impairments. Analyzing the performance of wireless communication systems impaired by oscillator phase noise, and designing systems to operate efficiently in strong phase noise conditions are critical problems in communication theory. The criticality of these problems is accentuated with the growing interest in new physical layer technologies, and the deployment of wireless backhaul networks. This forms the main motivation for this thesis where we analyze the impact of phase noise on the system performance, and we also design algorithms in order to mitigate phase noise and its effects. First, we address the problem of maximum a posteriori (MAP) detection of data in the presence of strong phase noise in single-antenna systems. This is achieved by designing a low-complexity joint phase-estimator data-detector. We show that the proposed method outperforms existing detectors, especially when high order signal constellations are used. Then, in order to further improve system performance, we consider the problem of optimizing signal constellations for transmission over channels impaired by phase noise. Specifically, we design signal constellations such that the error rate performance of the system is minimized, and the information rate of the system is maximized. We observe that these optimized constellations significantly improve the system performance, when compared to conventional constellations, and those proposed in the literature. Next, we derive the MAP symbol detector for a MIMO system where each antenna at the transceiver has its own oscillator. We propose three suboptimal, low-complexity algorithms for approximately implementing the MAP symbol detector, which involve joint phase noise estimation and data detection. We observe that the proposed techniques significantly outperform the other algorithms in prior works. Finally, we study the impact of phase noise on the performance of a massive MIMO system, where we analyze both uplink and downlink performances. Based on rigorous analyses of the achievable rates, we provide interesting insights for the following question: how should oscillators be connected to the antennas at a base station, which employs a large number of antennas

    Semantic and effective communications

    Get PDF
    Shannon and Weaver categorized communications into three levels of problems: the technical problem, which tries to answer the question "how accurately can the symbols of communication be transmitted?"; the semantic problem, which asks the question "how precisely do the transmitted symbols convey the desired meaning?"; the effectiveness problem, which strives to answer the question "how effectively does the received meaning affect conduct in the desired way?". Traditionally, communication technologies mainly addressed the technical problem, ignoring the semantics or the effectiveness problems. Recently, there has been increasing interest to address the higher level semantic and effectiveness problems, with proposals ranging from semantic to goal oriented communications. In this thesis, we propose to formulate the semantic problem as a joint source-channel coding (JSCC) problem and the effectiveness problem as a multi-agent partially observable Markov decision process (MA-POMDP). As such, for the semantic problem, we propose DeepWiVe, the first-ever end-to-end JSCC video transmission scheme that leverages the power of deep neural networks (DNNs) to directly map video signals to channel symbols, combining video compression, channel coding, and modulation steps into a single neural transform. We also further show that it is possible to use predefined constellation designs as well as secure the physical layer communication against eavesdroppers for deep learning (DL) driven JSCC schemes, making such schemes much more viable for deployment in the real world. For the effectiveness problem, we propose a novel formulation by considering multiple agents communicating over a noisy channel in order to achieve better coordination and cooperation in a multi-agent reinforcement learning (MARL) framework. Specifically, we consider a MA-POMDP, in which the agents, in addition to interacting with the environment, can also communicate with each other over a noisy communication channel. The noisy communication channel is considered explicitly as part of the dynamics of the environment, and the message each agent sends is part of the action that the agent can take. As a result, the agents learn not only to collaborate with each other but also to communicate "effectively'' over a noisy channel. Moreover, we show that this framework generalizes both the semantic and technical problems. In both instances, we show that the resultant communication scheme is superior to one where the communication is considered separately from the underlying semantic or goal of the problem.Open Acces

    Managing knowledge in times of organizational re-structuring

    Get PDF
    This thesis is located within the area of Knowledge Management and focuses on enhancing the transfer of knowledge. The research investigated how organisations manage knowledge in times of major restructuring. The research used Action Research to establish a collaborative partnership with the client organisation and to enable a cyclical approach to the research activity with ongoing involvement that allows feedback to be gathered as the research progresses. There was concern that knowledge was being lost and ways needed to be developed to stem the haemorrhage due to the movement of people to different posts or their departure from the organisation. Consequently the importance of the research for the Post Office was established in the first phase of the research. The research was based on interviews with managers in the Post Office and other selected organisations. Interview analyses showed differences in approaches to managing knowledge, often depending on their organisational epistemology. Consequently it was possible to build a framework for managing knowledge in times of change. The model was explored further within the Post Office to establish its validity and reliability and practical use for managers. Overall, the research recognises the potential for improved processes that, if applied effectively at the appropriate planning juncture, could result in improved identification and transfer of knowledge during times of major organisational restructuring. The research contributes to theory by identifying the critical period of transaction when a change or restructuring activity is underway. It also contributes by the exploration of two existing knowledge management process models and development of two ancillary models that enable the working of knowledge processes to be understood in greater detail. The research contributes to managerial practice by the development of a practical working framework enabling an organisation to make practical use of the research. By using the model organisations and those managing change will be able to support their thinking and trigger knowledge assessment, capture and transfer activities in a systematic way. Key words: Knowledge management; Knowledge processes; Knowledge transfer; Organisational restructuring; Change management
    • …
    corecore