11,481 research outputs found

    A Graph-Based Semi-Supervised k Nearest-Neighbor Method for Nonlinear Manifold Distributed Data Classification

    Get PDF
    kk Nearest Neighbors (kkNN) is one of the most widely used supervised learning algorithms to classify Gaussian distributed data, but it does not achieve good results when it is applied to nonlinear manifold distributed data, especially when a very limited amount of labeled samples are available. In this paper, we propose a new graph-based kkNN algorithm which can effectively handle both Gaussian distributed data and nonlinear manifold distributed data. To achieve this goal, we first propose a constrained Tired Random Walk (TRW) by constructing an RR-level nearest-neighbor strengthened tree over the graph, and then compute a TRW matrix for similarity measurement purposes. After this, the nearest neighbors are identified according to the TRW matrix and the class label of a query point is determined by the sum of all the TRW weights of its nearest neighbors. To deal with online situations, we also propose a new algorithm to handle sequential samples based a local neighborhood reconstruction. Comparison experiments are conducted on both synthetic data sets and real-world data sets to demonstrate the validity of the proposed new kkNN algorithm and its improvements to other version of kkNN algorithms. Given the widespread appearance of manifold structures in real-world problems and the popularity of the traditional kkNN algorithm, the proposed manifold version kkNN shows promising potential for classifying manifold-distributed data.Comment: 32 pages, 12 figures, 7 table

    An adaptive Michigan approach PSO for nearest prototype classification

    Get PDF
    Proceedings of: Second International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2007, La Manga del Mar Menor, Spain, June 18-21, 2007.Nearest Prototype methods can be quite successful on many pattern classification problems. In these methods, a collection of prototypes has to be found that accurately represents the input patterns. The classifier then assigns classes based on the nearest prototype in this collection. In this paper we develop a new algorithm (called AMPSO), based on the Particle Swarm Optimization (PSO) algorithm, that can be used to find those prototypes. Each particle in a swarm represents a single prototype in the solution; the swarm evolves using modified PSO equations with both particle competition and cooperation. Experimentation includes an artificial problem and six common application problems from the UCI data sets. The results show that the AMPSO algorithm is able to find solutions with a reduced number of prototypes that classify data with comparable or better accuracy than the 1-NN classifier. The algorithm can also be compared or improves the results of many classical algorithms in each of those problems; and the results show that AMPSO also performs significantly better than any tested algorithm in one of the problems.This article has been financed by the Spanish founded research MEC project OPLINK::UC3M, Ref: TIN2005-08818-C04-02 and CAM project UC3M-TEC-05-029

    Local feature weighting in nearest prototype classification

    Get PDF
    The distance metric is the corner stone of nearest neighbor (NN)-based methods, and therefore, of nearest prototype (NP) algorithms. That is because they classify depending on the similarity of the data. When the data is characterized by a set of features which may contribute to the classification task in different levels, feature weighting or selection is required, sometimes in a local sense. However, local weighting is typically restricted to NN approaches. In this paper, we introduce local feature weighting (LFW) in NP classification. LFW provides each prototype its own weight vector, opposite to typical global weighting methods found in the NP literature, where all the prototypes share the same one. Providing each prototype its own weight vector has a novel effect in the borders of the Voronoi regions generated: They become nonlinear. We have integrated LFW with a previously developed evolutionary nearest prototype classifier (ENPC). The experiments performed both in artificial and real data sets demonstrate that the resulting algorithm that we call LFW in nearest prototype classification (LFW-NPC) avoids overfitting on training data in domains where the features may have different contribution to the classification task in different areas of the feature space. This generalization capability is also reflected in automatically obtaining an accurate and reduced set of prototypes.Publicad
    corecore