220 research outputs found

    Feature Extraction Using the Hough Transform

    Get PDF
    This paper contains a brief literature survey of applications and improvements of the Hough transform, a description of the Hough transform and a few of its algorithms, and simulation examples of line and curve detection using the Hough transform

    Towards low-cost gigabit wireless systems at 60 GHz

    Get PDF
    The world-wide availability of the huge amount of license-free spectral space in the 60 GHz band provides wide room for gigabit-per-second (Gb/s) wireless applications. A commercial (read: low-cost) 60-GHz transceiver will, however, provide limited system performance due to the stringent link budget and the substantial RF imperfections. The work presented in this thesis is intended to support the design of low-cost 60-GHz transceivers for Gb/s transmission over short distances (a few meters). Typical applications are the transfer of high-definition streaming video and high-speed download. The presented work comprises research into the characteristics of typical 60-GHz channels, the evaluation of the transmission quality as well as the development of suitable baseband algorithms. This can be summarized as follows. In the first part, the characteristics of the wave propagation at 60 GHz are charted out by means of channel measurements and ray-tracing simulations for both narrow-beam and omni-directional configurations. Both line-of-sight (LOS) and non-line-of-sight (NLOS) are considered. This study reveals that antennas that produce a narrow beam can be used to boost the received power by tens of dBs when compared with omnidirectional configurations. Meanwhile, the time-domain dispersion of the channel is reduced to the order of nanoseconds, which facilitates Gb/s data transmission over 60-GHz channels considerably. Besides the execution of measurements and simulations, the influence of antenna radiation patterns is analyzed theoretically. It is indicated to what extent the signal-to-noise ratio, Rician-K factor and channel dispersion are improved by application of narrow-beam antennas and to what extent these parameters will be influenced by beam pointing errors. From both experimental and analytical work it can be concluded that the problem of the stringent link-budget can be solved effectively by application of beam-steering techniques. The second part treats wideband transmission methods and relevant baseband algorithms. The considered schemes include orthogonal frequency division multiplexing (OFDM), multi-carrier code division multiple access (MC-CDMA) and single carrier with frequency-domain equalization (SC-FDE), which are promising candidates for Gb/s wireless transmission. In particular, the optimal linear equalization in the frei quency domain and associated implementation issues such as synchronization and channel estimation are examined. Bit error rate (BER) expressions are derived to evaluate the transmission performance. Besides the linear equalization techniques, a low-complexity inter-symbol interference cancellation technique is proposed to achieve much better performance of code-spreading systems such as MC-CDMA and SC-FDE. Both theoretical analysis and simulations demonstrate that the proposed scheme offers great advantages as regards both complexity and performance. This makes it particularly suitable for 60-GHz applications in multipath environments. The third part treats the influence of quantization and RF imperfections on the considered transmission methods in the context of 60-GHz radios. First, expressions for the BER are derived and the influence of nonlinear distortions caused by the digital-to-analog converters, analog-to-digital converters and power amplifiers on the BER performance is examined. Next, the BER performance under the influence of phase noise and IQ imbalance is evaluated for the case that digital compensation techniques are applied in the receiver as well as for the case that such techniques are not applied. Finally, a baseline design of a low-cost Gb/s 60-GHz transceiver is presented. It is shown that, by application of beam-steering in combination with SC-FDE without advanced channel coding, a data rate in the order of 2 Gb/s can be achieved over a distance of 10 meters in a typical NLOS indoor scenario

    Partially adaptive array signal processing with application to airborne radar

    Get PDF

    Interference characterization and suppression for multiuser direct-sequence spread-spectrum system

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 175-184).In this thesis we investigate efficient modulation and detection techniques for the uplink (i.e. transmission from mobile to base station) of a DS-CDMA network. Specifically, the thesis contains three parts. In the first part, we focus on the mobile transmitter. In particular, we evaluate and compare the spectral efficiency of two promising variable rate DS-CDMA transmission techniques, multicode (MCD) and variable-spreading-gain (VSG), under the presence of multiple-access (user-to-user) interferences (MAI) and multipath interferences. The uniqueness of our study is that in bit-error-rate evaluation, instead of approximating the interference as Gaussian noise (which has been done in most of the previous studies), we incorporate both power and distribution of interferences into consideration. We show where the Gaussian assumption may give misleading answers and how our results in these cases are different from those obtained in the past. In part two and three of the thesis, we focus on the base station receiver. Specifically, we present effective joint detection techniques that have good performance-complexity tradeoff. Part two of the thesis introduces a class of novel multistage parallel interference cancellation algorithms based on stage-by-stage minimum mean-squared error (MMSE) optimization. We show that this scheme is capable of achieving significantly better performance than other algorithms with similar complexity. Part three of the thesis presents a low-complexity dual-mode multiuser detector that dynamically switches its detection mode between the matched-filter receiver and the decorrelator. We show that this detector is capable of achieving the performance of a decorrelator but with significant savings in processing power and complexity.by Mingxi Fan.Ph.D
    • …
    corecore