50,458 research outputs found

    Adaptive synchronization of dynamics on evolving complex networks

    Full text link
    We study the problem of synchronizing a general complex network by means of an adaptive strategy in the case where the network topology is slowly time varying and every node receives at each time only one aggregate signal from the set of its neighbors. We introduce an appropriately defined potential that each node seeks to minimize in order to reach/maintain synchronization. We show that our strategy is effective in tracking synchronization as well as in achieving synchronization when appropriate conditions are met.Comment: Accepted for publication on Physical Review Letter

    Synchronization of complex-valued chaotic systems

    Get PDF
    Synchronization is a collective behaviour in a complex dynamical network by which the trajectories of all its agents converge to a common state due to the inherent coupling between them plus, in some cases, the existence of external inputs. Due to obvious difficulty reasons, networks of chaotic systems have often been taken as benchmark examples where to apply synchronization techniques. In turn, complex-valued dynamical networks are gaining research interest because of the variety of physical magnitudes that allow a complex-variable representation. In this article, synchronization in complex-valued chaotic systems is firstly induced by feedback and adaptive control techniques, and then, a complex-valued sliding mode control strategy is tested for the same purpose. Numerical validations carried out using Matlab show that the complex sliding mode controller outperforms both the feedback and the adaptive controllers2021/202

    Adaptive Synchronization of Nonlinearly Parameterized Complex Dynamical Networks with Unknown Time-Varying Parameters

    Get PDF
    A new adaptive learning control approach is proposed for a class of nonlinearly parameterized complex dynamical networks with unknown time-varying parameters. By using the parameter separation and reparameterization technique, the adaptive learning laws of periodically time-varying and constant parameters and an adaptive control strategy are designed to ensure the asymptotic convergence of the synchronization error in the sense of square error norm. Then, a sufficient condition of the synchronization is given by constructing a composite energy function. Finally, an example of the complex network is used to verify the effectiveness of proposed approach

    Adaptive Exponential Synchronization of Coupled Complex Networks on General Graphs

    Get PDF
    We investigate the synchronization in complex dynamical networks, where the coupling configuration corresponds to a weighted graph. An adaptive synchronization method on general coupling configuration graphs is given. The networks may synchronize at an arbitrarily given exponential rate by enhancing the updated law of the variable coupling strength and achieve synchronization more quickly by adding edges to original graphs. Finally, numerical simulations are provided to illustrate the effectiveness of our theoretical results

    Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Get PDF
    The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach

    Adaptive Synchronization of Complex Dynamical Networks with State Predictor

    Get PDF
    This paper addresses the adaptive synchronization of complex dynamical networks with nonlinear dynamics. Based on the Lyapunov method, it is shown that the network can synchronize to the synchronous state by introducing local adaptive strategy to the coupling strengths. Moreover, it is also proved that the convergence speed of complex dynamical networks can be increased via designing a state predictor. Finally, some numerical simulations are worked out to illustrate the analytical results

    Complex Projective Synchronization in Drive-Response Stochastic Complex Networks by Impulsive Pinning Control

    Get PDF
    The complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems is considered. The impulsive pinning control scheme is adopted to achieve complex projective synchronization and several simple and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of the proposed methods

    Multiobjective synchronization of coupled systems

    Get PDF
    Copyright @ 2011 American Institute of PhysicsSynchronization of coupled chaotic systems has been a subject of great interest and importance, in theory but also various fields of application, such as secure communication and neuroscience. Recently, based on stability theory, synchronization of coupled chaotic systems by designing appropriate coupling has been widely investigated. However, almost all the available results have been focusing on ensuring the synchronization of coupled chaotic systems with as small coupling strengths as possible. In this contribution, we study multiobjective synchronization of coupled chaotic systems by considering two objectives in parallel, i. e., minimizing optimization of coupling strength and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach. The constraints on the coupling form are also investigated by formulating the problem into a multiobjective constraint problem. We find that the proposed evolutionary method can outperform conventional adaptive strategy in several respects. The results presented in this paper can be extended into nonlinear time-series analysis, synchronization of complex networks and have various applications
    corecore