2,859 research outputs found

    Adaptive beamforming for large arrays in satellite communications systems with dispersed coverage

    Get PDF
    Conventional multibeam satellite communications systems ensure coverage of wide areas through multiple fixed beams where all users inside a beam share the same bandwidth. We consider a new and more flexible system where each user is assigned his own beam, and the users can be very geographically dispersed. This is achieved through the use of a large direct radiating array (DRA) coupled with adaptive beamforming so as to reject interferences and to provide a maximal gain to the user of interest. New fast-converging adaptive beamforming algorithms are presented, which allow to obtain good signal to interference and noise ratio (SINR) with a number of snapshots much lower than the number of antennas in the array. These beamformers are evaluated on reference scenarios

    Steering vector errors and diagonal loading

    Get PDF
    Diagonal loading is one of the most widely used and effective methods to improve robustness of adaptive beamformers. In this paper, we consider its application to the case of steering vector errors, i.e. when there exists a mismatch between the actual steering vector of interest and the presumed one. More precisely, we address the problem of optimally selecting the loading level with a view to maximise the signal to interference plus noise ratio in the presence of random steering vector errors. First, we derive an expression for the optimal loading for a given steering vector error and we show that this loading is negative. Next, this optimal loading is averaged with respect to the probability density function of the steering vector errors, yielding a very simple expression for the average optimal loading. Numerical simulations attest to the validity of the analysis and show that diagonal loading with the optimal loading factor derived herein provides a performance close to optimum

    Partial Relaxation Approach: An Eigenvalue-Based DOA Estimator Framework

    Full text link
    In this paper, the partial relaxation approach is introduced and applied to DOA estimation using spectral search. Unlike existing methods like Capon or MUSIC which can be considered as single source approximations of multi-source estimation criteria, the proposed approach accounts for the existence of multiple sources. At each considered direction, the manifold structure of the remaining interfering signals impinging on the sensor array is relaxed, which results in closed form estimates for the interference parameters. The conventional multidimensional optimization problem reduces, thanks to this relaxation, to a simple spectral search. Following this principle, we propose estimators based on the Deterministic Maximum Likelihood, Weighted Subspace Fitting and covariance fitting methods. To calculate the pseudo-spectra efficiently, an iterative rooting scheme based on the rational function approximation is applied to the partial relaxation methods. Simulation results show that the performance of the proposed estimators is superior to the conventional methods especially in the case of low Signal-to-Noise-Ratio and low number of snapshots, irrespectively of any specific structure of the sensor array while maintaining a comparable computational cost as MUSIC.Comment: This work has been submitted to IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    MIMO radar space–time adaptive processing using prolate spheroidal wave functions

    Get PDF
    In the traditional transmitting beamforming radar system, the transmitting antennas send coherent waveforms which form a highly focused beam. In the multiple-input multiple-output (MIMO) radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omnidirectional) waveforms. These waveforms can be extracted at the receiver by a matched filterbank. The extracted signals can be used to obtain more diversity or to improve the spatial resolution for clutter. This paper focuses on space–time adaptive processing (STAP) for MIMO radar systems which improves the spatial resolution for clutter. With a slight modification, STAP methods developed originally for the single-input multiple-output (SIMO) radar (conventional radar) can also be used in MIMO radar. However, in the MIMO radar, the rank of the jammer-and-clutter subspace becomes very large, especially the jammer subspace. It affects both the complexity and the convergence of the STAP algorithm. In this paper, the clutter space and its rank in the MIMO radar are explored. By using the geometry of the problem rather than data, the clutter subspace can be represented using prolate spheroidal wave functions (PSWF). A new STAP algorithm is also proposed. It computes the clutter space using the PSWF and utilizes the block-diagonal property of the jammer covariance matrix. Because of fully utilizing the geometry and the structure of the covariance matrix, the method has very good SINR performance and low computational complexity
    • 

    corecore