106 research outputs found

    Computational Methods for Sparse Solution of Linear Inverse Problems

    Get PDF
    The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications

    Improving Pseudo-Time Stepping Convergence for CFD Simulations With Neural Networks

    Full text link
    Computational fluid dynamics (CFD) simulations of viscous fluids described by the Navier-Stokes equations are considered. Depending on the Reynolds number of the flow, the Navier-Stokes equations may exhibit a highly nonlinear behavior. The system of nonlinear equations resulting from the discretization of the Navier-Stokes equations can be solved using nonlinear iteration methods, such as Newton's method. However, fast quadratic convergence is typically only obtained in a local neighborhood of the solution, and for many configurations, the classical Newton iteration does not converge at all. In such cases, so-called globalization techniques may help to improve convergence. In this paper, pseudo-transient continuation is employed in order to improve nonlinear convergence. The classical algorithm is enhanced by a neural network model that is trained to predict a local pseudo-time step. Generalization of the novel approach is facilitated by predicting the local pseudo-time step separately on each element using only local information on a patch of adjacent elements as input. Numerical results for standard benchmark problems, including flow through a backward facing step geometry and Couette flow, show the performance of the machine learning-enhanced globalization approach; as the software for the simulations, the CFD module of COMSOL Multiphysics is employed
    • …
    corecore