9,286 research outputs found

    A formal approach to vague expressions with indexicals

    Get PDF
    In this paper, we offer a formal approach to the scantily investigated problem of vague expressions with indexicals, in particular including the spatial indexical `here' and the temporal indexical `now'. We present two versions of an adaptive fuzzy logic extended with an indexical, formally expressed by a modifier as a function that applies to predicative formulas. In the first version, such an operator is applied to non-vague predicates. The modified formulas may have a fuzzy truth value and fit into a Sorites paradox. We use adaptive fuzzy logics as a reasoning tool to address such a paradox. The modifier enables us to offer an adequate explication of the dynamic reasoning process. In the second version, a different result is obtained for an indexical applied to a formula with a possibly vague predicate, where the resulting modified formula has a crisp value and does not add up to a Sorites paradox

    Avoiding deontic explosion by contextually restricting aggregation

    Get PDF
    In this paper, we present an adaptive logic for deontic conflicts, called P2.1(r), that is based on Goble's logic SDLaPe-a bimodal extension of Goble's logic P that invalidates aggregation for all prima facie obligations. The logic P2.1(r) has several advantages with respect to SDLaPe. For consistent sets of obligations it yields the same results as Standard Deontic Logic and for inconsistent sets of obligations, it validates aggregation "as much as possible". It thus leads to a richer consequence set than SDLaPe. The logic P2.1(r) avoids Goble's criticisms against other non-adjunctive systems of deontic logic. Moreover, it can handle all the 'toy examples' from the literature as well as more complex ones

    Causal discovery and the problem of ignorance. An adaptive logic approach

    Get PDF
    AbstractIn this paper, I want to substantiate three related claims regarding causal discovery from non-experimental data. Firstly, in scientific practice, the problem of ignorance is ubiquitous, persistent, and far-reaching. Intuitively, the problem of ignorance bears upon the following situation. A set of random variables V is studied but only partly tested for (conditional) independencies; i.e. for some variables A and B it is not known whether they are (conditionally) independent. Secondly, Judea Pearl's most meritorious and influential algorithm for causal discovery (the IC algorithm) cannot be applied in cases of ignorance. It presupposes that a full list of (conditional) independence relations is on hand and it would lead to unsatisfactory results when applied to partial lists. Finally, the problem of ignorance is successfully treated by means of ALIC, the adaptive logic for causal discovery presented in this paper

    Logische bewijsdynamieken voor de formele explicatie van wetenschappelijke probleemoplossingsprocessen

    Get PDF

    Tolerating normative conflicts in deontic logic

    Get PDF

    Rationalizable Implementation

    Get PDF
    This note studies (full) implementation of social choice functions under complete information in (correlated) rationalizable strategies. The monotonicity condition shown by Maskin (1999) to be necessary for Nash implementation is also necessary under the more stringent solution concept. We show that it is also sufficient under a mild "no worst alternative" condition. In particular, no economic condition is required.Implementation, Complete information, Rationalizability, Maskin monotonicity
    • …
    corecore