8,174 research outputs found

    Resource Allocation and Interference Mitigation Techniques for Cooperative Multi-Antenna and Spread Spectrum Wireless Networks

    Full text link
    This chapter presents joint interference suppression and power allocation algorithms for DS-CDMA and MIMO networks with multiple hops and amplify-and-forward and decode-and-forward (DF) protocols. A scheme for joint allocation of power levels across the relays and linear interference suppression is proposed. We also consider another strategy for joint interference suppression and relay selection that maximizes the diversity available in the system. Simulations show that the proposed cross-layer optimization algorithms obtain significant gains in capacity and performance over existing schemes.Comment: 10 figures. arXiv admin note: substantial text overlap with arXiv:1301.009

    Multi-User Flexible Coordinated Beamforming using Lattice Reduction for Massive MIMO Systems

    Full text link
    The application of precoding algorithms in multi-user massive multiple-input multiple-output (MU-Massive-MIMO) systems is restricted by the dimensionality constraint that the number of transmit antennas has to be greater than or equal to the total number of receive antennas. In this paper, a lattice reduction (LR)-aided flexible coordinated beamforming (LR-FlexCoBF) algorithm is proposed to overcome the dimensionality constraint in overloaded MU-Massive-MIMO systems. A random user selection scheme is integrated with the proposed LR-FlexCoBF to extend its application to MU-Massive-MIMO systems with arbitary overloading levels. Simulation results show that significant improvements in terms of bit error rate (BER) and sum-rate performances can be achieved by the proposed LR-FlexCoBF precoding algorithm.Comment: 5 figures, Eusipc

    Coordinate Tomlinson-Harashima Precoding Design for Overloaded Multi-user MIMO Systems

    Full text link
    Tomlinson-Harashima precoding (THP) is a nonlinear processing technique employed at the transmit side to implement the concept of dirty paper coding (DPC). The perform of THP, however, is restricted by the dimensionality constraint that the number of transmit antennas has to be greater or equal to the total number of receive antennas. In this paper, we propose an iterative coordinate THP algorithm for the scenarios in which the total number of receive antennas is larger than the number of transmit antennas. The proposed algorithm is implemented on two types of THP structures, the decentralized THP (dTHP) with diagonal weighted filters at the receivers of the users, and the centralized THP (cTHP) with diagonal weighted filter at the transmitter. Simulation results show that a much better bit error rate (BER) and sum-rate performances can be achieved by the proposed iterative coordinate THP compared to the previous linear art.Comment: 3 figures, 6 pages, ISWCS 2014. arXiv admin note: text overlap with arXiv:1401.475

    Study of Opportunistic Cooperation Techniques using Jamming and Relays for Physical-Layer Security in Buffer-aided Relay Networks

    Full text link
    In this paper, we investigate opportunistic relay and jammer cooperation schemes in multiple-input multiple-output (MIMO) buffer-aided relay networks. The network consists of one source, an arbitrary number of relay nodes, legitimate users and eavesdroppers, with the constraints of physical layer security. We propose an algorithm to select a set of relay nodes to enhance the legitimate users' transmission and another set of relay nodes to perform jamming of the eavesdroppers. With Inter-Relay interference (IRI) taken into account, interference cancellation can be implemented to assist the transmission of the legitimate users. Secondly, IRI can also be used to further increase the level of harm of the jamming signal to the eavesdroppers. By exploiting the fact that the jamming signal can be stored at the relay nodes, we also propose a hybrid algorithm to set a signal-to-interference and noise ratio (SINR) threshold at the node to determine the type of signal stored at the relay node. With this separation, the signals with high SINR are delivered to the users as conventional relay systems and the low SINR performance signals are stored as potential jamming signals. Simulation results show that the proposed techniques obtain a significant improvement in secrecy rate over previously reported algorithms.Comment: 8 pages, 3 figure

    Study of Buffer-Aided Space-Time Coding for Multiple-Antenna Cooperative Wireless Networks

    Full text link
    In this work we propose an adaptive buffer-aided space-time coding scheme for cooperative wireless networks. A maximum likelihood receiver and adjustable code vectors are considered subject to a power constraint with an amplify-and-forward cooperation strategy. Each multiple-antenna relay is equipped with a buffer and is capable of storing the received symbols before forwarding them to the destination. We also present an adaptive relay selection and optimization algorithm, in which the instantaneous signal to noise ratio in each link is calculated and compared at the destination. An adjustable code vector obtained by a feedback channel at each relay is employed to form a space-time coded vector which achieves a higher coding gain than standard schemes. A stochastic gradient algorithm is developed to compute the parameters of the adjustable code vector with reduced computational complexity. Simulation results show that the proposed buffer-aided scheme and algorithm obtain performance gains over existing schemes.Comment: 7 pages, 2 figure

    Adaptive Minimum BER Reduced-Rank Linear Detection for Massive MIMO Systems

    Full text link
    In this paper, we propose a novel adaptive reduced-rank strategy for very large multiuser multi-input multi-output (MIMO) systems. The proposed reduced-rank scheme is based on the concept of joint iterative optimization (JIO) of filters according to the minimization of the bit error rate (BER) cost function. The proposed optimization technique adjusts the weights of a projection matrix and a reduced-rank filter jointly. We develop stochastic gradient (SG) algorithms for their adaptive implementation and introduce a novel automatic rank selection method based on the BER criterion. Simulation results for multiuser MIMO systems show that the proposed adaptive algorithms significantly outperform existing schemes.Comment: 6 figures. arXiv admin note: substantial text overlap with arXiv:1302.413

    Adaptive Power Allocation Strategies using DSTC in Cooperative MIMO Networks

    Full text link
    Adaptive Power Allocation (PA) algorithms with different criteria for a cooperative Multiple-Input Multiple-Output (MIMO) network equipped with Distributed Space-Time Coding (DSTC) are proposed and evaluated. Joint constrained optimization algorithms to determine the power allocation parameters, the channel parameters and the receive filter are proposed for each transmitted stream in each link. Linear receive filter and maximum-likelihood (ML) detection are considered with Amplify-and-Forward (AF) and Decode-and-Forward (DF) cooperation strategies. In the proposed algorithms, the elements in the PA matrices are optimized at the destination node and then transmitted back to the relay nodes via a feedback channel. The effects of the feedback errors are considered. Linear MMSE expressions and the PA matrices depend on each other and are updated iteratively. Stochastic gradient (SG) algorithms are developed with reduced computational complexity. Simulation results show that the proposed algorithms obtain significant performance gains as compared to existing power allocation schemes.Comment: 5 figures, 9 pages. IET Communications, 201

    Study of Joint MSINR and Relay Selection Algorithms for Distributed Beamforming

    Full text link
    This paper presents joint maximum signal-to-interference-plus-noise ratio (MSINR) and relay selection algorithms for distributed beamforming. We propose a joint MSINR and restricted greedy search relay selection (RGSRS) algorithm with a total relay transmit power constraint that iteratively optimizes both the beamforming weights at the relays nodes, maximizing the SINR at the destination. Specifically, we devise a relay selection scheme that based on greedy search and compare it to other schemes like restricted random relay selection (RRRS) and restricted exhaustive search relay selection (RESRS). A complexity analysis is provided and simulation results show that the proposed joint MSINR and RGSRS algorithm achieves excellent bit error rate (BER) and SINR performances.Comment: 7 pages, 2 figures. arXiv admin note: text overlap with arXiv:1707.0095

    Flexible Widely-Linear Multi-Branch Decision Feedback Detection Algorithms for Massive MIMO Systems

    Full text link
    This paper presents widely-linear multi-branch decision feedback detection techniques for large-scale multiuser multiple-antenna systems. We consider a scenario with impairments in the radio-frequency chain in which the in-phase (I) and quadrature (Q) components exhibit an imbalance, which degrades the receiver performance and originates non-circular signals. A widely-linear multi-branch decision feedback receiver is developed to mitigate both the multiuser interference and the I/Q imbalance effects. An iterative detection and decoding scheme with the proposed receiver and convolutional codes is also devised. Simulation results show that the proposed techniques outperform existing algorithms.Comment: 3 figures, 9 pages. arXiv admin note: text overlap with arXiv:1308.272

    Joint Power Adjustment and Interference Mitigation Techniques for Cooperative Spread Spectrum Systems

    Full text link
    This paper presents joint power allocation and interference mitigation techniques for the downlink of spread spectrum systems which employ multiple relays and the amplify and forward cooperation strategy. We propose a joint constrained optimization framework that considers the allocation of power levels across the relays subject to an individual power constraint and the design of linear receivers for interference suppression. We derive constrained minimum mean-squared error (MMSE) expressions for the parameter vectors that determine the optimal power levels across the relays and the linear receivers. In order to solve the proposed optimization problem efficiently, we develop joint adaptive power allocation and interference suppression algorithms that can be implemented in a distributed fashion. The proposed stochastic gradient (SG) and recursive least squares (RLS) algorithms mitigate the interference by adjusting the power levels across the relays and estimating the parameters of the linear receiver. SG and RLS channel estimation algorithms are also derived to determine the coefficients of the channels across the base station, the relays and the destination terminal. The results of simulations show that the proposed techniques obtain significant gains in performance and capacity over non-cooperative systems and cooperative schemes with equal power allocation.Comment: 6 figures. arXiv admin note: text overlap with arXiv:1301.009
    • …
    corecore