69 research outputs found

    ARMAS: Active Reconstruction of Missing Audio Segments

    Full text link
    Digital audio signal reconstruction of a lost or corrupt segment using deep learning algorithms has been explored intensively in recent years. Nevertheless, prior traditional methods with linear interpolation, phase coding and tone insertion techniques are still in vogue. However, we found no research work on reconstructing audio signals with the fusion of dithering, steganography, and machine learning regressors. Therefore, this paper proposes the combination of steganography, halftoning (dithering), and state-of-the-art shallow (RF- Random Forest regression) and deep learning (LSTM- Long Short-Term Memory) methods. The results (including comparing the SPAIN, Autoregressive, deep learning-based, graph-based, and other methods) are evaluated with three different metrics. The observations from the results show that the proposed solution is effective and can enhance the reconstruction of audio signals performed by the side information (e.g., Latent representation and learning for audio inpainting) steganography provides. Moreover, this paper proposes a novel framework for reconstruction from heavily compressed embedded audio data using halftoning (i.e., dithering) and machine learning, which we termed the HCR (halftone-based compression and reconstruction). This work may trigger interest in optimising this approach and/or transferring it to different domains (i.e., image reconstruction). Compared to existing methods, we show improvement in the inpainting performance in terms of signal-to-noise (SNR), the objective difference grade (ODG) and the Hansen's audio quality metric.Comment: 9 pages, 2 Tables, 8 Figure

    Study of Reversible Scheme for Data Hiding

    Get PDF
    Web is the prominent correspondence media now a days yet message exchange over the web is confronting a few issue, for example, copyright control, information security, information, confirmation and so forth. Information stowing away assumes a critical part in information security. It is a procedure in which mystery information or data is put away or covered up into cover media. Thus many explores are advancing on the field like web security, steganography, and cryptography. At the point when exchange the safe or private information over a shaky channel it is expected to encode cover or unique information and after that insert the protected information into that unique or, on the other hand cover picture

    Digital Right Management (DRM) Dan Audio Watermarking Untuk Perlindungan Hak Cipta Pada Konten Musik Digital

    Full text link
    Pembajakan hak cipta terhadap konten musik digital masih menjadi masalah besar dalam industri musik. Hal tersebut dikarenakan mudahnya proses pembajakan dan kemudahan distribusi konten digital melalui internet. Isu perlindungan hak cipta menjadi hal sangat penting untuk diterapkan dalam industri musik. Digital right management (DRM) dan audio watermarking adalah cara yang bisa diterapkan untuk melindungi properti intelektual hak cipta pada konten musik digital melawan pembajakan

    Digital Right Management (DRM) dan Audio Watermarking untuk Perlindungan Hak Cipta pada Konten Musik Digital

    Get PDF
    Pembajakan hak cipta terhadap konten musik digital masih menjadi masalah besar dalam industri musik. Hal tersebut dikarenakan mudahnya proses pembajakan dan kemudahan distribusi konten digital melalui internet. Isu perlindungan hak cipta menjadi hal sangat penting untuk diterapkan dalam industri musik. Digital right management (DRM) dan audio watermarking adalah cara yang bisa diterapkan untuk melindungi properti  intelektual hak cipta pada  konten musik digital melawan pembajakan.  Kata kunci: pembajakan musik, musik digital, digital audio, hak cipta, digital right management (DRM),  audio watermarking

    Side-Information For Steganography Design And Detection

    Get PDF
    Today, the most secure steganographic schemes for digital images embed secret messages while minimizing a distortion function that describes the local complexity of the content. Distortion functions are heuristically designed to predict the modeling error, or in other words, how difficult it would be to detect a single change to the original image in any given area. This dissertation investigates how both the design and detection of such content-adaptive schemes can be improved with the use of side-information. We distinguish two types of side-information, public and private: Public side-information is available to the sender and at least in part also to anybody else who can observe the communication. Content complexity is a typical example of public side-information. While it is commonly used for steganography, it can also be used for detection. In this work, we propose a modification to the rich-model style feature sets in both spatial and JPEG domain to inform such feature sets of the content complexity. Private side-information is available only to the sender. The previous use of private side-information in steganography was very successful but limited to steganography in JPEG images. Also, the constructions were based on heuristic with little theoretical foundations. This work tries to remedy this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary domain. We also put forward a theoretical investigation of how to incorporate side-information based on a model of images. Third, we propose to use a novel type of side-information in the form of multiple exposures for JPEG steganography

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work
    corecore