342 research outputs found

    Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling

    Get PDF
    Settlement prediction of geosynthetic-reinforced soil (GRS) abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers. Hence, in this paper, a novel hybrid artificial intelligence (AI)-based model was developed by the combination of artificial neural network (ANN) and Harris hawks’ optimisation (HHO), that is, ANN-HHO, to predict the settlement of the GRS abutments. Five other robust intelligent models such as support vector regression (SVR), Gaussian process regression (GPR), relevance vector machine (RVM), sequential minimal optimisation regression (SMOR), and least-median square regression (LMSR) were constructed and compared to the ANN-HHO model. The predictive strength, relalibility and robustness of the model were evaluated based on rigorous statistical testing, ranking criteria, multi-criteria approach, uncertainity analysis and sensitivity analysis (SA). Moreover, the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature. The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models. Therefore, it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments. Finally, the model has been converted into a simple mathematical formulation for easy hand calculations, and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations

    A Recommendation System for Meta-modeling: A Meta-learning Based Approach

    Get PDF
    Various meta-modeling techniques have been developed to replace computationally expensive simulation models. The performance of these meta-modeling techniques on different models is varied which makes existing model selection/recommendation approaches (e.g., trial-and-error, ensemble) problematic. To address these research gaps, we propose a general meta-modeling recommendation system using meta-learning which can automate the meta-modeling recommendation process by intelligently adapting the learning bias to problem characterizations. The proposed intelligent recommendation system includes four modules: (1) problem module, (2) meta-feature module which includes a comprehensive set of meta-features to characterize the geometrical properties of problems, (3) meta-learner module which compares the performance of instance-based and model-based learning approaches for optimal framework design, and (4) performance evaluation module which introduces two criteria, Spearman\u27s ranking correlation coefficient and hit ratio, to evaluate the system on the accuracy of model ranking prediction and the precision of the best model recommendation, respectively. To further improve the performance of meta-learning for meta-modeling recommendation, different types of feature reduction techniques, including singular value decomposition, stepwise regression and ReliefF, are studied. Experiments show that our proposed framework is able to achieve 94% correlation on model rankings, and a 91% hit ratio on best model recommendation. Moreover, the computational cost of meta-modeling recommendation is significantly reduced from an order of minutes to seconds compared to traditional trial-and-error and ensemble process. The proposed framework can significantly advance the research in meta-modeling recommendation, and can be applied for data-driven system modeling

    Reduced-order modelling for high-speed aerial weapon aerodynamics

    Get PDF
    In this work a high-fidelity low-cost surrogate of a computational fluid dynamics analysis tool was developed. This computational tool is composed of general and physics- based approximation methods by which three dimensional high-speed aerodynamic flow- field predictions are made with high efficiency and an accuracy which is comparable with that of CFD. The tool makes use of reduced-basis methods that are suitable for both linear and non-linear problems, whereby the basis vectors are computed via the proper orthogonal decomposition (POD) of a training dataset or a set of observations. The surrogate model was applied to two flow problems related to high-speed weapon aerodynamics. Comparisons of surrogate model predictions with high-fidelity CFD simulations suggest that POD-based reduced-order modelling together with response surface methods provide a reliable and robust approach for efficient and accurate predictions. In contrast to the many modelling efforts reported in the literature, this surrogate model provides access to information about the whole flow-field. In an attempt to reduce the up-front cost necessary to generate the training dataset from which the surrogate model is subsequently developed, a variable-fidelity POD- based reduced-order modelling method is proposed in this work for the first time. In this model, the scalar coefficients which are obtained by projecting the solution vectors onto the basis vectors, are mapped between spaces of low and high fidelities, to achieve high- fidelity predictions with complete flow-field information. In general, this technique offers an automatic way of fusing variable-fidelity data through interpolation and extrapolation schemes together with reduced-order modelling (ROM). Furthermore, a study was undertaken to investigate the possibility of modelling the transonic flow over an aerofoil using a kernel POD–based reduced-order modelling method. By using this type of ROM it was noticed that the weak non-linear features of the transonic flow are accurately modelled using a small number of basis vectors. The strong non-linear features are only modelled accurately by using a large number of basis vectors

    Proposal of an adaptive infotainment system depending on driving scenario complexity

    Get PDF
    The PhD research project is framed within the plan of industrial doctorates of the “Generalitat de Catalunya”. During the investigation, most of the work was carried out at the facilities of the vehicle manufacturer SEAT, specifically at the information and entertainment (infotainment) department. In the same way, there was a continuous cooperation with the telematics department of the UPC. The main objective of the project consisted in the design and validation of an adaptive infotainment system dependent on the driving complexity. The system was created with the purpose of increasing driver’ experience while guaranteeing a proper level of road safety. Given the increasing number of application and services available in current infotainment systems, it becomes necessary to devise a system capable of balancing these two counterparts. The most relevant parameters that can be used for balancing these metrics while driving are: type of services offered, interfaces available for interacting with the services, the complexity of driving and the profile of the driver. The present study can be divided into two main development phases, each phase had as outcome a real physical block that came to be part of the final system. The final system was integrated in a vehicle and validated in real driving conditions. The first phase consisted in the creation of a model capable of estimating the driving complexity based on a set of variables related to driving. The model was built by employing machine learning methods and the dataset necessary to create it was collected from several driving routes carried out by different participants. This phase allowed to create a model capable of estimating, with a satisfactory accuracy, the complexity of the road using easily extractable variables in any modern vehicle. This approach simplify the implementation of this algorithm in current vehicles. The second phase consisted in the classification of a set of principles that allow the design of the adaptive infotainment system based on the complexity of the road. These principles are defined based on previous researches undertaken in the field of usability and user experience of graphical interfaces. According to these of principles, a real adaptive infotainment system with the most commonly used functionalities; navigation, radio and media was designed and integrated in a real vehicle. The developed system was able to adapt the presentation of the content according to the estimation of the driving complexity given by the block developed in phase one. The adaptive system was validated in real driving scenarios by several participants and results showed a high level of acceptance and satisfaction towards this adaptive infotainment. As a starting point for future research, a proof of concept was carried out to integrate new interfaces into a vehicle. The interface used as reference was a Head Mounted screen that offered redundant information in relation to the instrument cluster. Tests with participants served to understand how users perceive the introduction of new technologies and how objective benefits could be blurred by initial biases.El proyecto de investigación de doctorado se enmarca dentro del plan de doctorados industriales de la Generalitat de Catalunya. Durante la investigación, la mayor parte del trabajo se llevó a cabo en las instalaciones del fabricante de vehículos SEAT, específicamente en el departamento de información y entretenimiento (infotainment). Del mismo modo, hubo una cooperación continua con el departamento de telemática de la UPC. El objetivo principal del proyecto consistió en el diseño y la validación de un sistema de información y entretenimiento adaptativo que se ajustaba de acuerdo a la complejidad de la conducción. El sistema fue creado con el propósito de aumentar la experiencia del conductor y garantizar un nivel adecuado en la seguridad vial. El proyecto surge dado el número creciente de aplicaciones y servicios disponibles en los sistemas actuales de información y entretenimiento; es por ello que se hace necesario contar con un sistema capaz de equilibrar estas dos contrapartes. Los parámetros más relevantes que se pueden usar para equilibrar estas métricas durante la conducción son: el tipo de servicios ofrecidos, las interfaces disponibles para interactuar con los servicios, la complejidad de la conducción y el perfil del conductor. El presente estudio se puede dividir en dos fases principales de desarrollo, cada fase tuvo como resultado un componente que se convirtió en parte del sistema final. El sistema final fue integrado en un vehículo y validado en condiciones reales de conducción. La primera fase consistió en la creación de un modelo capaz de estimar la complejidad de la conducción en base a un conjunto de variables relacionadas con la conducción. El modelo se construyó empleando "Machine Learning Methods" y el conjunto de datos necesario para crearlo se recopiló a partir de varias rutas de conducción realizadas por diferentes participantes. Esta fase permitió crear un modelo capaz de estimar, con una precisión satisfactoria, la complejidad de la carretera utilizando variables fácilmente extraíbles en cualquier vehículo moderno. Este enfoque simplifica la implementación de este algoritmo en los vehículos actuales. La segunda fase consistió en la clasificación de un conjunto de principios que permiten el diseño del sistema de información y entretenimiento adaptativo basado en la complejidad de la carretera. Estos principios se definen en base a investigaciones anteriores realizadas en el campo de usabilidad y experiencia del usuario con interfaces gráficas. De acuerdo con estos principios, un sistema de entretenimiento y entretenimiento real integrando las funcionalidades más utilizadas; navegación, radio y audio fue diseñado e integrado en un vehículo real. El sistema desarrollado pudo adaptar la presentación del contenido según la estimación de la complejidad de conducción dada por el bloque desarrollado en la primera fase. El sistema adaptativo fue validado en escenarios de conducción reales por varios participantes y los resultados mostraron un alto nivel de aceptación y satisfacción hacia este entretenimiento informativo adaptativo. Como punto de partida para futuras investigaciones, se llevó a cabo una prueba de concepto para integrar nuevas interfaces en un vehículo. La interfaz utilizada como referencia era una pantalla a la altura de los ojos (Head Mounted Display) que ofrecía información redundante en relación con el grupo de instrumentos. Las pruebas con los participantes sirvieron para comprender cómo perciben los usuarios la introducción de nuevas tecnologías y cómo los sesgos iniciales podrían difuminar los beneficios

    Support Vector Machine and Its Difficulties From Control Field of View

    Get PDF
    The application of the Support Vector Machine (SVM) classification algorithm to large-scale datasets is limited due to its use of a large number of support vectors and dependency of its performance on its kernel parameter. In this paper, SVM is redefined as a control system and Iterative Learning Control (ILC) method is used to optimize SVM’s kernel parameter. The ILC technique first defines an error equation and then iteratively updates the kernel function and its regularization parameter using the training error and the previous state of the system. The closed-loop structure of the proposed algorithm increases the robustness of the technique to uncertainty and improves its convergence speed. Experimental results were generated using nine standard benchmark datasets covering a wide range of applications. Experimental results show that the proposed method generates superior or very competitive results in term of accuracy than those of classical and stateof-the-art SVM-based techniques while using a significantly smaller number of support vectors
    corecore