590 research outputs found

    Control and State Estimation of the One-Phase Stefan Problem via Backstepping Design

    Full text link
    This paper develops a control and estimation design for the one-phase Stefan problem. The Stefan problem represents a liquid-solid phase transition as time evolution of a temperature profile in a liquid-solid material and its moving interface. This physical process is mathematically formulated as a diffusion partial differential equation (PDE) evolving on a time-varying spatial domain described by an ordinary differential equation (ODE). The state-dependency of the moving interface makes the coupled PDE-ODE system a nonlinear and challenging problem. We propose a full-state feedback control law, an observer design, and the associated output-feedback control law via the backstepping method. The designed observer allows estimation of the temperature profile based on the available measurement of solid phase length. The associated output-feedback controller ensures the global exponential stability of the estimation errors, the H1- norm of the distributed temperature, and the moving interface to the desired setpoint under some explicitly given restrictions on the setpoint and observer gain. The exponential stability results are established considering Neumann and Dirichlet boundary actuations.Comment: 16 pages, 11 figures, submitted to IEEE Transactions on Automatic Contro

    Delay-Adaptive Control of First-order Hyperbolic PIDEs

    Full text link
    We develop a delay-adaptive controller for a class of first-order hyperbolic partial integro-differential equations (PIDEs) with an unknown input delay. By employing a transport PDE to represent delayed actuator states, the system is transformed into a transport partial differential equation (PDE) with unknown propagation speed cascaded with a PIDE. A parameter update law is designed using a Lyapunov argument and the infinite-dimensional backstepping technique to establish global stability results. Furthermore, the well-posedness of the closed-loop system is analyzed. Finally, the effectiveness of the proposed method was validated through numerical simulation

    Backstepping PDE Design: A Convex Optimization Approach

    Get PDF
    Abstract\u2014Backstepping design for boundary linear PDE is formulated as a convex optimization problem. Some classes of parabolic PDEs and a first-order hyperbolic PDE are studied, with particular attention to non-strict feedback structures. Based on the compactness of the Volterra and Fredholm-type operators involved, their Kernels are approximated via polynomial functions. The resulting Kernel-PDEs are optimized using Sumof- Squares (SOS) decomposition and solved via semidefinite programming, with sufficient precision to guarantee the stability of the system in the L2-norm. This formulation allows optimizing extra degrees of freedom where the Kernel-PDEs are included as constraints. Uniqueness and invertibility of the Fredholm-type transformation are proved for polynomial Kernels in the space of continuous functions. The effectiveness and limitations of the approach proposed are illustrated by numerical solutions of some Kernel-PDEs

    Ensembles of Hyperbolic PDEs: Stabilization by Backstepping

    Full text link
    For the quite extensively developed PDE backstepping methodology for coupled linear hyperbolic PDEs, we provide a generalization from finite collections of such PDEs, whose states at each location in space are vector-valued, to previously unstudied infinite (continuum) ensembles of such hyperbolic PDEs, whose states are function-valued. The motivation for studying such systems comes from traffic applications (where driver and vehicle characteristics are continuously parametrized), fluid and structural applications, and future applications in population dynamics, including epidemiology. Our design is of an exponentially stabilizing scalar-valued control law for a PDE system in two independent dimensions, one spatial dimension and one ensemble dimension. In the process of generalizing PDE backstepping from finite to infinite collections of PDE systems, we generalize the results for PDE backstepping kernels to the continuously parametrized Goursat-form PDEs that govern such continuously parametrized kernels. The theory is illustrated with a simulation example, which is selected so that the kernels are explicitly solvable, to lend clarity and interpretability to the simulation results.Comment: 16 pages, 4 figures, to be publishe
    • …
    corecore