600 research outputs found

    Smoothing technique for nonsmooth composite minimization with linear operator

    Full text link
    We introduce and analyze an algorithm for the minimization of convex functions that are the sum of differentiable terms and proximable terms composed with linear operators. The method builds upon the recently developed smoothed gap technique. In addition to a precise convergence rate result, valid even in the presence of linear inclusion constraints, this new method allows an explicit treatment of the gradient of differentiable functions and can be enhanced with line-search. We also study the consequences of restarting the acceleration of the algorithm at a given frequency. These new features are not classical for primal-dual methods and allow us to solve difficult large-scale convex optimization problems. We numerically illustrate the superior performance of the algorithm on basis pursuit, TV-regularized least squares regression and L1 regression problems against the state-of-the-art.Comment: 26 pages, 5 figure

    Catalyst Acceleration for Gradient-Based Non-Convex Optimization

    Get PDF
    We introduce a generic scheme to solve nonconvex optimization problems using gradient-based algorithms originally designed for minimizing convex functions. Even though these methods may originally require convexity to operate, the proposed approach allows one to use them on weakly convex objectives, which covers a large class of non-convex functions typically appearing in machine learning and signal processing. In general, the scheme is guaranteed to produce a stationary point with a worst-case efficiency typical of first-order methods, and when the objective turns out to be convex, it automatically accelerates in the sense of Nesterov and achieves near-optimal convergence rate in function values. These properties are achieved without assuming any knowledge about the convexity of the objective, by automatically adapting to the unknown weak convexity constant. We conclude the paper by showing promising experimental results obtained by applying our approach to incremental algorithms such as SVRG and SAGA for sparse matrix factorization and for learning neural networks

    A Smooth Primal-Dual Optimization Framework for Nonsmooth Composite Convex Minimization

    Get PDF
    We propose a new first-order primal-dual optimization framework for a convex optimization template with broad applications. Our optimization algorithms feature optimal convergence guarantees under a variety of common structure assumptions on the problem template. Our analysis relies on a novel combination of three classic ideas applied to the primal-dual gap function: smoothing, acceleration, and homotopy. The algorithms due to the new approach achieve the best known convergence rate results, in particular when the template consists of only non-smooth functions. We also outline a restart strategy for the acceleration to significantly enhance the practical performance. We demonstrate relations with the augmented Lagrangian method and show how to exploit the strongly convex objectives with rigorous convergence rate guarantees. We provide numerical evidence with two examples and illustrate that the new methods can outperform the state-of-the-art, including Chambolle-Pock, and the alternating direction method-of-multipliers algorithms.Comment: 35 pages, accepted for publication on SIAM J. Optimization. Tech. Report, Oct. 2015 (last update Sept. 2016
    • …
    corecore