23 research outputs found

    Collaborative Trajectory Planning and Resource Allocation for Multi-Target Tracking in Airborne Radar Networks under Spectral Coexistence

    Get PDF
    This paper develops a collaborative trajectory planning and resource allocation (CTPRA) strategy for multi-target tracking (MTT) in a spectral coexistence environment utilizing airborne radar networks. The key mechanism of the proposed strategy is to jointly design the flight trajectory and optimize the radar assignment, transmit power, dwell time, and signal effective bandwidth allocation of multiple airborne radars, aiming to enhance the MTT performance under the constraints of the tolerable threshold of interference energy, platform kinematic limitations, and given illumination resource budgets. The closed-form expression for the Bayesian Cramér–Rao lower bound (BCRLB) under the consideration of spectral coexistence is calculated and adopted as the optimization criterion of the CTPRA strategy. It is shown that the formulated CTPRA problem is a mixed-integer programming, non-linear, non-convex optimization model owing to its highly coupled Boolean and continuous parameters. By incorporating semi-definite programming (SDP), particle swarm optimization (PSO), and the cyclic minimization technique, an iterative four-stage solution methodology is proposed to tackle the formulated optimization problem efficiently. The numerical results validate the effectiveness and the MTT performance improvement of the proposed CTPRA strategy in comparison with other benchmarks

    Analysis and Design of Joint Communication and Sensing for Wireless Cellular Networks

    Get PDF
    Joint communication and sensing (JCAS) has emerged as an important piece of technology that will radically change ordinary wireless communication and radar systems. This research area, which has significantly grown over the last decade, aims to develop integrated systems that can provide both communication and sensing/radar functionalities simultaneously. The convergence of both systems into the same joint platform facilitates a more efficient use of the hardware and spectrum resources, enabling new civilian and professional applications. This thesis focuses on the integration of JCAS functionalities into mobile cellular networks, such as fifth-generation new radio (5G NR) and sixth generation (6G) communication systems, which are developing toward higher frequency ranges at millimeter-wave (mm-wave) bands, coming with wider bandwidths, and have massive antenna arrays, providing a great framework to develop sensing functionalities. By implementing JCAS, the different nodes of the cellular network, such as the base station and user equipment, can sense and reconstruct their surroundings. However, the JCAS operation yields multiple design challenges that need to be addressed. To this end, this thesis aims to develop novel algorithms in two relevant research areas that comprise self-interference (SI) cancellation and beamforming optimization techniques for JCAS systems. This work analyzes the potential sensing performance of mobile cellular networks, proposing a joint framework and identifying the main radar processing techniques to support JCAS. The fundamental SI challenge stemming from the simultaneous operation of the transmitter and receiver is investigated, and different JCAS cancellation techniques are proposed. The performance and feasibility of the proposed JCAS system is evaluated through simulation and measurement experiments at different frequency bands and scenarios, identifying mm-wave frequencies as the key enabler for future JCAS systems. Alternative antenna architectures and beamforming methods for mm-wave JCAS platforms are proposed by considering both communication and sensing requirements. Specifically, this thesis proposes novel beamforming methods that provide multiple beams, supporting efficient beamformed communications while an additional beam senses the environment simultaneously. In addition, the proposed beam-forming algorithms address the SI challenge by implementing an efficient spatial suppression scheme to suppress the direct transmitter–receiver coupling

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Massive MIMO is a reality - What is next? Five promising research directions for antenna arrays

    Get PDF
    Massive MIMO (multiple-input multiple-output) is no longer a “wild” or “promising” concept for future cellular networks—in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies—once viewed prohibitively complicated and costly—is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO

    A comparison of processing approaches for distributed radar sensing

    Get PDF
    Radar networks received increasing attention in recent years as they can outperform single monostatic or bistatic systems. Further attention is being dedicated to these systems as an application of the MIMO concept, well know in communications for increasing the capacity of the channel and improving the overall quality of the connection. However, it is here shown that radar network can take advantage not only from the angular diversity in observing the target, but also from a variety of ways of processing the received signals. The number of devices comprising the network has also been taken into the analysis. Detection and false alarm are evaluated in noise only and clutter from a theoretical and simulated point of view. Particular attention is dedicated to the statistics behind the processing. Experiments have been performed to evaluate practical applications of the proposed processing approaches and to validate assumptions made in the theoretical analysis. In particular, the radar network used for gathering real data is made up of two transmitters and three receivers. More than two transmitters are well known to generate mutual interference and therefore require additional e�fforts to mitigate the system self-interference. However, this allowed studying aspects of multistatic clutter, such as correlation, which represent a first and novel insight in this topic. Moreover, two approaches for localizing targets have been developed. Whilst the first is a graphic approach, the second is hybrid numerical (partially decentralized, partially centralized) which is clearly shown to improve dramatically the single radar accuracy. Finally the e�ects of exchanging angular with frequency diversity are shown as well in some particular cases. This led to develop the Frequency MIMO and the Frequency Diverse Array, according to the separation of two consecutive frequencies. The latter is a brand new topic in technical literature, which is attracting the interest of the technical community because of its potential to generate range-dependant patterns. Both the latter systems can be used in radar-designing to improve the agility and the effciency of the radar
    corecore