6,825 research outputs found

    Uncalibrated Dynamic Mechanical System Controller

    Get PDF
    An apparatus and method for enabling an uncalibrated, model independent controller for a mechanical system using a dynamic quasi-Newton algorithm which incorporates velocity components of any moving system parameter(s) is provided. In the preferred embodiment, tracking of a moving target by a robot having multiple degrees of freedom is achieved using an uncalibrated model independent visual servo control. Model independent visual servo control is defined as using visual feedback to control a robot's servomotors without a precisely calibrated kinematic robot model or camera model. A processor updates a Jacobian and a controller provides control signals such that the robot's end effector is directed to a desired location relative to a target on a workpiece.Georgia Tech Research Corporatio

    Adaptive servo control for umbilical mating

    Get PDF
    Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed

    Benchmarking Cerebellar Control

    Get PDF
    Cerebellar models have long been advocated as viable models for robot dynamics control. Building on an increasing insight in and knowledge of the biological cerebellum, many models have been greatly refined, of which some computational models have emerged with useful properties with respect to robot dynamics control. Looking at the application side, however, there is a totally different picture. Not only is there not one robot on the market which uses anything remotely connected with cerebellar control, but even in research labs most testbeds for cerebellar models are restricted to toy problems. Such applications hardly ever exceed the complexity of a 2 DoF simulated robot arm; a task which is hardly representative for the field of robotics, or relates to realistic applications. In order to bring the amalgamation of the two fields forwards, we advocate the use of a set of robotics benchmarks, on which existing and new computational cerebellar models can be comparatively tested. It is clear that the traditional approach to solve robotics dynamics loses ground with the advancing complexity of robotic structures; there is a desire for adaptive methods which can compete as traditional control methods do for traditional robots. In this paper we try to lay down the successes and problems in the fields of cerebellar modelling as well as robot dynamics control. By analyzing the common ground, a set of benchmarks is suggested which may serve as typical robot applications for cerebellar models

    Manipulating Highly Deformable Materials Using a Visual Feedback Dictionary

    Full text link
    The complex physical properties of highly deformable materials such as clothes pose significant challenges fanipulation systems. We present a novel visual feedback dictionary-based method for manipulating defoor autonomous robotic mrmable objects towards a desired configuration. Our approach is based on visual servoing and we use an efficient technique to extract key features from the RGB sensor stream in the form of a histogram of deformable model features. These histogram features serve as high-level representations of the state of the deformable material. Next, we collect manipulation data and use a visual feedback dictionary that maps the velocity in the high-dimensional feature space to the velocity of the robotic end-effectors for manipulation. We have evaluated our approach on a set of complex manipulation tasks and human-robot manipulation tasks on different cloth pieces with varying material characteristics.Comment: The video is available at goo.gl/mDSC4

    Markerless visual servoing on unknown objects for humanoid robot platforms

    Full text link
    To precisely reach for an object with a humanoid robot, it is of central importance to have good knowledge of both end-effector, object pose and shape. In this work we propose a framework for markerless visual servoing on unknown objects, which is divided in four main parts: I) a least-squares minimization problem is formulated to find the volume of the object graspable by the robot's hand using its stereo vision; II) a recursive Bayesian filtering technique, based on Sequential Monte Carlo (SMC) filtering, estimates the 6D pose (position and orientation) of the robot's end-effector without the use of markers; III) a nonlinear constrained optimization problem is formulated to compute the desired graspable pose about the object; IV) an image-based visual servo control commands the robot's end-effector toward the desired pose. We demonstrate effectiveness and robustness of our approach with extensive experiments on the iCub humanoid robot platform, achieving real-time computation, smooth trajectories and sub-pixel precisions
    corecore