8,359 research outputs found

    Efficient Probabilistic Group Testing Based on Traitor Tracing

    Get PDF
    Inspired by recent results from collusion-resistant traitor tracing, we provide a framework for constructing efficient probabilistic group testing schemes. In the traditional group testing model, our scheme asymptotically requires T ~ 2 K ln N tests to find (with high probability) the correct set of K defectives out of N items. The framework is also applied to several noisy group testing and threshold group testing models, often leading to improvements over previously known results, but we emphasize that this framework can be applied to other variants of the classical model as well, both in adaptive and in non-adaptive settings.Comment: 8 pages, 3 figures, 1 tabl

    Non-adaptive Group Testing on Graphs

    Full text link
    Grebinski and Kucherov (1998) and Alon et al. (2004-2005) study the problem of learning a hidden graph for some especial cases, such as hamiltonian cycle, cliques, stars, and matchings. This problem is motivated by problems in chemical reactions, molecular biology and genome sequencing. In this paper, we present a generalization of this problem. Precisely, we consider a graph G and a subgraph H of G and we assume that G contains exactly one defective subgraph isomorphic to H. The goal is to find the defective subgraph by testing whether an induced subgraph contains an edge of the defective subgraph, with the minimum number of tests. We present an upper bound for the number of tests to find the defective subgraph by using the symmetric and high probability variation of Lov\'asz Local Lemma

    On Finding a Subset of Healthy Individuals from a Large Population

    Full text link
    In this paper, we derive mutual information based upper and lower bounds on the number of nonadaptive group tests required to identify a given number of "non defective" items from a large population containing a small number of "defective" items. We show that a reduction in the number of tests is achievable compared to the approach of first identifying all the defective items and then picking the required number of non-defective items from the complement set. In the asymptotic regime with the population size NN \rightarrow \infty, to identify LL non-defective items out of a population containing KK defective items, when the tests are reliable, our results show that CsK1o(1)(Φ(α0,β0)+o(1))\frac{C_s K}{1-o(1)} (\Phi(\alpha_0, \beta_0) + o(1)) measurements are sufficient, where CsC_s is a constant independent of N,KN, K and LL, and Φ(α0,β0)\Phi(\alpha_0, \beta_0) is a bounded function of α0limNLNK\alpha_0 \triangleq \lim_{N\rightarrow \infty} \frac{L}{N-K} and β0limNKNK\beta_0 \triangleq \lim_{N\rightarrow \infty} \frac{K} {N-K}. Further, in the nonadaptive group testing setup, we obtain rigorous upper and lower bounds on the number of tests under both dilution and additive noise models. Our results are derived using a general sparse signal model, by virtue of which, they are also applicable to other important sparse signal based applications such as compressive sensing.Comment: 32 pages, 2 figures, 3 tables, revised version of a paper submitted to IEEE Trans. Inf. Theor

    Computationally Tractable Algorithms for Finding a Subset of Non-defective Items from a Large Population

    Full text link
    In the classical non-adaptive group testing setup, pools of items are tested together, and the main goal of a recovery algorithm is to identify the "complete defective set" given the outcomes of different group tests. In contrast, the main goal of a "non-defective subset recovery" algorithm is to identify a "subset" of non-defective items given the test outcomes. In this paper, we present a suite of computationally efficient and analytically tractable non-defective subset recovery algorithms. By analyzing the probability of error of the algorithms, we obtain bounds on the number of tests required for non-defective subset recovery with arbitrarily small probability of error. Our analysis accounts for the impact of both the additive noise (false positives) and dilution noise (false negatives). By comparing with the information theoretic lower bounds, we show that the upper bounds on the number of tests are order-wise tight up to a log2K\log^2K factor, where KK is the number of defective items. We also provide simulation results that compare the relative performance of the different algorithms and provide further insights into their practical utility. The proposed algorithms significantly outperform the straightforward approaches of testing items one-by-one, and of first identifying the defective set and then choosing the non-defective items from the complement set, in terms of the number of measurements required to ensure a given success rate.Comment: In this revision: Unified some proofs and reorganized the paper, corrected a small mistake in one of the proofs, added more reference

    Optimal Nested Test Plan for Combinatorial Quantitative Group Testing

    Full text link
    We consider the quantitative group testing problem where the objective is to identify defective items in a given population based on results of tests performed on subsets of the population. Under the quantitative group testing model, the result of each test reveals the number of defective items in the tested group. The minimum number of tests achievable by nested test plans was established by Aigner and Schughart in 1985 within a minimax framework. The optimal nested test plan offering this performance, however, was not obtained. In this work, we establish the optimal nested test plan in closed form. This optimal nested test plan is also order optimal among all test plans as the population size approaches infinity. Using heavy-hitter detection as a case study, we show via simulation examples orders of magnitude improvement of the group testing approach over two prevailing sampling-based approaches in detection accuracy and counter consumption. Other applications include anomaly detection and wideband spectrum sensing in cognitive radio systems

    The Capacity of Adaptive Group Testing

    Full text link
    We define capacity for group testing problems and deduce bounds for the capacity of a variety of noisy models, based on the capacity of equivalent noisy communication channels. For noiseless adaptive group testing we prove an information-theoretic lower bound which tightens a bound of Chan et al. This can be combined with a performance analysis of a version of Hwang's adaptive group testing algorithm, in order to deduce the capacity of noiseless and erasure group testing models.Comment: 5 page

    Asymptotics of Fingerprinting and Group Testing: Tight Bounds from Channel Capacities

    Get PDF
    In this work we consider the large-coalition asymptotics of various fingerprinting and group testing games, and derive explicit expressions for the capacities for each of these models. We do this both for simple decoders (fast but suboptimal) and for joint decoders (slow but optimal). For fingerprinting, we show that if the pirate strategy is known, the capacity often decreases linearly with the number of colluders, instead of quadratically as in the uninformed fingerprinting game. For many attacks the joint capacity is further shown to be strictly higher than the simple capacity. For group testing, we improve upon known results about the joint capacities, and derive new explicit asymptotics for the simple capacities. These show that existing simple group testing algorithms are suboptimal, and that simple decoders cannot asymptotically be as efficient as joint decoders. For the traditional group testing model, we show that the gap between the simple and joint capacities is a factor 1.44 for large numbers of defectives.Comment: 14 pages, 6 figure

    Boolean Compressed Sensing and Noisy Group Testing

    Full text link
    The fundamental task of group testing is to recover a small distinguished subset of items from a large population while efficiently reducing the total number of tests (measurements). The key contribution of this paper is in adopting a new information-theoretic perspective on group testing problems. We formulate the group testing problem as a channel coding/decoding problem and derive a single-letter characterization for the total number of tests used to identify the defective set. Although the focus of this paper is primarily on group testing, our main result is generally applicable to other compressive sensing models. The single letter characterization is shown to be order-wise tight for many interesting noisy group testing scenarios. Specifically, we consider an additive Bernoulli(qq) noise model where we show that, for NN items and KK defectives, the number of tests TT is O(KlogN1q)O(\frac{K\log N}{1-q}) for arbitrarily small average error probability and O(K2logN1q)O(\frac{K^2\log N}{1-q}) for a worst case error criterion. We also consider dilution effects whereby a defective item in a positive pool might get diluted with probability uu and potentially missed. In this case, it is shown that TT is O(KlogN(1u)2)O(\frac{K\log N}{(1-u)^2}) and O(K2logN(1u)2)O(\frac{K^2\log N}{(1-u)^2}) for the average and the worst case error criteria, respectively. Furthermore, our bounds allow us to verify existing known bounds for noiseless group testing including the deterministic noise-free case and approximate reconstruction with bounded distortion. Our proof of achievability is based on random coding and the analysis of a Maximum Likelihood Detector, and our information theoretic lower bound is based on Fano's inequality.Comment: In this revision: reorganized the paper, added citations to related work, and fixed some bug
    corecore