17,073 research outputs found

    The What-And-Where Filter: A Spatial Mapping Neural Network for Object Recognition and Image Understanding

    Full text link
    The What-and-Where filter forms part of a neural network architecture for spatial mapping, object recognition, and image understanding. The Where fllter responds to an image figure that has been separated from its background. It generates a spatial map whose cell activations simultaneously represent the position, orientation, ancl size of all tbe figures in a scene (where they are). This spatial map may he used to direct spatially localized attention to these image features. A multiscale array of oriented detectors, followed by competitve and interpolative interactions between position, orientation, and size scales, is used to define the Where filter. This analysis discloses several issues that need to be dealt with by a spatial mapping system that is based upon oriented filters, such as the role of cliff filters with and without normalization, the double peak problem of maximum orientation across size scale, and the different self-similar interpolation properties across orientation than across size scale. Several computationally efficient Where filters are proposed. The Where filter rnay be used for parallel transformation of multiple image figures into invariant representations that are insensitive to the figures' original position, orientation, and size. These invariant figural representations form part of a system devoted to attentive object learning and recognition (what it is). Unlike some alternative models where serial search for a target occurs, a What and Where representation can he used to rapidly search in parallel for a desired target in a scene. Such a representation can also be used to learn multidimensional representations of objects and their spatial relationships for purposes of image understanding. The What-and-Where filter is inspired by neurobiological data showing that a Where processing stream in the cerebral cortex is used for attentive spatial localization and orientation, whereas a What processing stream is used for attentive object learning and recognition.Advanced Research Projects Agency (ONR-N00014-92-J-4015, AFOSR 90-0083); British Petroleum (89-A-1204); National Science Foundation (IRI-90-00530, Graduate Fellowship); Office of Naval Research (N00014-91-J-4100, N00014-95-1-0409, N00014-95-1-0657); Air Force Office of Scientific Research (F49620-92-J-0499, F49620-92-J-0334

    A VLSI-design of the minimum entropy neuron

    Get PDF
    One of the most interesting domains of feedforward networks is the processing of sensor signals. There do exist some networks which extract most of the information by implementing the maximum entropy principle for Gaussian sources. This is done by transforming input patterns to the base of eigenvectors of the input autocorrelation matrix with the biggest eigenvalues. The basic building block of these networks is the linear neuron, learning with the Oja learning rule. Nevertheless, some researchers in pattern recognition theory claim that for pattern recognition and classification clustering transformations are needed which reduce the intra-class entropy. This leads to stable, reliable features and is implemented for Gaussian sources by a linear transformation using the eigenvectors with the smallest eigenvalues. In another paper (Brause 1992) it is shown that the basic building block for such a transformation can be implemented by a linear neuron using an Anti-Hebb rule and restricted weights. This paper shows the analog VLSI design for such a building block, using standard modules of multiplication and addition. The most tedious problem in this VLSI-application is the design of an analog vector normalization circuitry. It can be shown that the standard approaches of weight summation will not give the convergence to the eigenvectors for a proper feature transformation. To avoid this problem, our design differs significantly from the standard approaches by computing the real Euclidean norm. Keywords: minimum entropy, principal component analysis, VLSI, neural networks, surface approximation, cluster transformation, weight normalization circuit

    Adaptation and learning over networks for nonlinear system modeling

    Full text link
    In this chapter, we analyze nonlinear filtering problems in distributed environments, e.g., sensor networks or peer-to-peer protocols. In these scenarios, the agents in the environment receive measurements in a streaming fashion, and they are required to estimate a common (nonlinear) model by alternating local computations and communications with their neighbors. We focus on the important distinction between single-task problems, where the underlying model is common to all agents, and multitask problems, where each agent might converge to a different model due to, e.g., spatial dependencies or other factors. Currently, most of the literature on distributed learning in the nonlinear case has focused on the single-task case, which may be a strong limitation in real-world scenarios. After introducing the problem and reviewing the existing approaches, we describe a simple kernel-based algorithm tailored for the multitask case. We evaluate the proposal on a simulated benchmark task, and we conclude by detailing currently open problems and lines of research.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018
    • …
    corecore