43,299 research outputs found

    Dual-Directed Algorithm Design for Efficient Pure Exploration

    Full text link
    We consider pure-exploration problems in the context of stochastic sequential adaptive experiments with a finite set of alternative options. The goal of the decision-maker is to accurately answer a query question regarding the alternatives with high confidence with minimal measurement efforts. A typical query question is to identify the alternative with the best performance, leading to ranking and selection problems, or best-arm identification in the machine learning literature. We focus on the fixed-precision setting and derive a sufficient condition for optimality in terms of a notion of strong convergence to the optimal allocation of samples. Using dual variables, we characterize the necessary and sufficient conditions for an allocation to be optimal. The use of dual variables allow us to bypass the combinatorial structure of the optimality conditions that relies solely on primal variables. Remarkably, these optimality conditions enable an extension of top-two algorithm design principle, initially proposed for best-arm identification. Furthermore, our optimality conditions give rise to a straightforward yet efficient selection rule, termed information-directed selection, which adaptively picks from a candidate set based on information gain of the candidates. We outline the broad contexts where our algorithmic approach can be implemented. We establish that, paired with information-directed selection, top-two Thompson sampling is (asymptotically) optimal for Gaussian best-arm identification, solving a glaring open problem in the pure exploration literature. Our algorithm is optimal for ϵ\epsilon-best-arm identification and thresholding bandit problems. Our analysis also leads to a general principle to guide adaptations of Thompson sampling for pure-exploration problems. Numerical experiments highlight the exceptional efficiency of our proposed algorithms relative to existing ones.Comment: An earlier version of this paper appeared as an extended abstract in the Proceedings of the 36th Annual Conference on Learning Theory, COLT'23, with the title "Information-Directed Selection for Top-Two Algorithms.'

    Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains

    Get PDF
    In this paper, we consider comparison-based adaptive stochastic algorithms for solving numerical optimisation problems. We consider a specific subclass of algorithms that we call comparison-based step-size adaptive randomized search (CB-SARS), where the state variables at a given iteration are a vector of the search space and a positive parameter, the step-size, typically controlling the overall standard deviation of the underlying search distribution.We investigate the linear convergence of CB-SARS on\emph{scaling-invariant} objective functions. Scaling-invariantfunctions preserve the ordering of points with respect to their functionvalue when the points are scaled with the same positive parameter (thescaling is done w.r.t. a fixed reference point). This class offunctions includes norms composed with strictly increasing functions aswell as many non quasi-convex and non-continuousfunctions. On scaling-invariant functions, we show the existence of ahomogeneous Markov chain, as a consequence of natural invarianceproperties of CB-SARS (essentially scale-invariance and invariance tostrictly increasing transformation of the objective function). We thenderive sufficient conditions for \emph{global linear convergence} ofCB-SARS, expressed in terms of different stability conditions of thenormalised homogeneous Markov chain (irreducibility, positivity, Harrisrecurrence, geometric ergodicity) and thus define a general methodologyfor proving global linear convergence of CB-SARS algorithms onscaling-invariant functions. As a by-product we provide aconnexion between comparison-based adaptive stochasticalgorithms and Markov chain Monte Carlo algorithms.Comment: SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 201

    Adaptive inferential sensors based on evolving fuzzy models

    Get PDF
    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can a- ddress the challenges of the modern advanced process industry

    Offspring Population Size Matters when Comparing Evolutionary Algorithms with Self-Adjusting Mutation Rates

    Full text link
    We analyze the performance of the 2-rate (1+λ)(1+\lambda) Evolutionary Algorithm (EA) with self-adjusting mutation rate control, its 3-rate counterpart, and a (1+λ)(1+\lambda)~EA variant using multiplicative update rules on the OneMax problem. We compare their efficiency for offspring population sizes ranging up to λ=3,200\lambda=3,200 and problem sizes up to n=100,000n=100,000. Our empirical results show that the ranking of the algorithms is very consistent across all tested dimensions, but strongly depends on the population size. While for small values of λ\lambda the 2-rate EA performs best, the multiplicative updates become superior for starting for some threshold value of λ\lambda between 50 and 100. Interestingly, for population sizes around 50, the (1+λ)(1+\lambda)~EA with static mutation rates performs on par with the best of the self-adjusting algorithms. We also consider how the lower bound pminp_{\min} for the mutation rate influences the efficiency of the algorithms. We observe that for the 2-rate EA and the EA with multiplicative update rules the more generous bound pmin=1/n2p_{\min}=1/n^2 gives better results than pmin=1/np_{\min}=1/n when λ\lambda is small. For both algorithms the situation reverses for large~λ\lambda.Comment: To appear at Genetic and Evolutionary Computation Conference (GECCO'19). v2: minor language revisio
    corecore