8,256 research outputs found

    ARSTREAM: A Neural Network Model of Auditory Scene Analysis and Source Segregation

    Full text link
    Multiple sound sources often contain harmonics that overlap and may be degraded by environmental noise. The auditory system is capable of teasing apart these sources into distinct mental objects, or streams. Such an "auditory scene analysis" enables the brain to solve the cocktail party problem. A neural network model of auditory scene analysis, called the AIRSTREAM model, is presented to propose how the brain accomplishes this feat. The model clarifies how the frequency components that correspond to a give acoustic source may be coherently grouped together into distinct streams based on pitch and spatial cues. The model also clarifies how multiple streams may be distinguishes and seperated by the brain. Streams are formed as spectral-pitch resonances that emerge through feedback interactions between frequency-specific spectral representaion of a sound source and its pitch. First, the model transforms a sound into a spatial pattern of frequency-specific activation across a spectral stream layer. The sound has multiple parallel representations at this layer. A sound's spectral representation activates a bottom-up filter that is sensitive to harmonics of the sound's pitch. The filter activates a pitch category which, in turn, activate a top-down expectation that allows one voice or instrument to be tracked through a noisy multiple source environment. Spectral components are suppressed if they do not match harmonics of the top-down expectation that is read-out by the selected pitch, thereby allowing another stream to capture these components, as in the "old-plus-new-heuristic" of Bregman. Multiple simultaneously occuring spectral-pitch resonances can hereby emerge. These resonance and matching mechanisms are specialized versions of Adaptive Resonance Theory, or ART, which clarifies how pitch representations can self-organize durin learning of harmonic bottom-up filters and top-down expectations. The model also clarifies how spatial location cues can help to disambiguate two sources with similar spectral cures. Data are simulated from psychophysical grouping experiments, such as how a tone sweeping upwards in frequency creates a bounce percept by grouping with a downward sweeping tone due to proximity in frequency, even if noise replaces the tones at their interection point. Illusory auditory percepts are also simulated, such as the auditory continuity illusion of a tone continuing through a noise burst even if the tone is not present during the noise, and the scale illusion of Deutsch whereby downward and upward scales presented alternately to the two ears are regrouped based on frequency proximity, leading to a bounce percept. Since related sorts of resonances have been used to quantitatively simulate psychophysical data about speech perception, the model strengthens the hypothesis the ART-like mechanisms are used at multiple levels of the auditory system. Proposals for developing the model to explain more complex streaming data are also provided.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-92-J-0225); Office of Naval Research (N00014-01-1-0624); Advanced Research Projects Agency (N00014-92-J-4015); British Petroleum (89A-1204); National Science Foundation (IRI-90-00530); American Society of Engineering Educatio

    ARSTREAM: A Neural Network Model of Auditory Scene Analysis and Source Segregation

    Full text link
    Multiple sound sources often contain harmonics that overlap and may be degraded by environmental noise. The auditory system is capable of teasing apart these sources into distinct mental objects, or streams. Such an "auditory scene analysis" enables the brain to solve the cocktail party problem. A neural network model of auditory scene analysis, called the AIRSTREAM model, is presented to propose how the brain accomplishes this feat. The model clarifies how the frequency components that correspond to a give acoustic source may be coherently grouped together into distinct streams based on pitch and spatial cues. The model also clarifies how multiple streams may be distinguishes and seperated by the brain. Streams are formed as spectral-pitch resonances that emerge through feedback interactions between frequency-specific spectral representaion of a sound source and its pitch. First, the model transforms a sound into a spatial pattern of frequency-specific activation across a spectral stream layer. The sound has multiple parallel representations at this layer. A sound's spectral representation activates a bottom-up filter that is sensitive to harmonics of the sound's pitch. The filter activates a pitch category which, in turn, activate a top-down expectation that allows one voice or instrument to be tracked through a noisy multiple source environment. Spectral components are suppressed if they do not match harmonics of the top-down expectation that is read-out by the selected pitch, thereby allowing another stream to capture these components, as in the "old-plus-new-heuristic" of Bregman. Multiple simultaneously occuring spectral-pitch resonances can hereby emerge. These resonance and matching mechanisms are specialized versions of Adaptive Resonance Theory, or ART, which clarifies how pitch representations can self-organize durin learning of harmonic bottom-up filters and top-down expectations. The model also clarifies how spatial location cues can help to disambiguate two sources with similar spectral cures. Data are simulated from psychophysical grouping experiments, such as how a tone sweeping upwards in frequency creates a bounce percept by grouping with a downward sweeping tone due to proximity in frequency, even if noise replaces the tones at their interection point. Illusory auditory percepts are also simulated, such as the auditory continuity illusion of a tone continuing through a noise burst even if the tone is not present during the noise, and the scale illusion of Deutsch whereby downward and upward scales presented alternately to the two ears are regrouped based on frequency proximity, leading to a bounce percept. Since related sorts of resonances have been used to quantitatively simulate psychophysical data about speech perception, the model strengthens the hypothesis the ART-like mechanisms are used at multiple levels of the auditory system. Proposals for developing the model to explain more complex streaming data are also provided.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-92-J-0225); Office of Naval Research (N00014-01-1-0624); Advanced Research Projects Agency (N00014-92-J-4015); British Petroleum (89A-1204); National Science Foundation (IRI-90-00530); American Society of Engineering Educatio

    On the Power of Adaptivity in Sparse Recovery

    Get PDF
    The goal of (stable) sparse recovery is to recover a kk-sparse approximation xβˆ—x* of a vector xx from linear measurements of xx. Specifically, the goal is to recover xβˆ—x* such that ||x-x*||_p <= C min_{k-sparse x'} ||x-x'||_q for some constant CC and norm parameters pp and qq. It is known that, for p=q=1p=q=1 or p=q=2p=q=2, this task can be accomplished using m=O(klog⁑(n/k))m=O(k \log (n/k)) non-adaptive measurements [CRT06] and that this bound is tight [DIPW10,FPRU10,PW11]. In this paper we show that if one is allowed to perform measurements that are adaptive, then the number of measurements can be considerably reduced. Specifically, for C=1+epsC=1+eps and p=q=2p=q=2 we show - A scheme with m=O((1/eps)kloglog(neps/k))m=O((1/eps)k log log (n eps/k)) measurements that uses O(logβˆ—klog⁑log⁑(neps/k))O(log* k \log \log (n eps/k)) rounds. This is a significant improvement over the best possible non-adaptive bound. - A scheme with m=O((1/eps)klog(k/eps)+klog⁑(n/k))m=O((1/eps) k log (k/eps) + k \log (n/k)) measurements that uses /two/ rounds. This improves over the best possible non-adaptive bound. To the best of our knowledge, these are the first results of this type. As an independent application, we show how to solve the problem of finding a duplicate in a data stream of nn items drawn from 1,2,...,nβˆ’1{1, 2, ..., n-1} using O(logn)O(log n) bits of space and O(loglogn)O(log log n) passes, improving over the best possible space complexity achievable using a single pass.Comment: 18 pages; appearing at FOCS 201
    • …
    corecore