23,981 research outputs found

    Is There Light at the Ends of the Tunnel? Wireless Sensor Networks for Adaptive Lighting in Road Tunnels

    Get PDF
    Existing deployments of wireless sensor networks (WSNs) are often conceived as stand-alone monitoring tools. In this paper, we report instead on a deployment where the WSN is a key component of a closed-loop control system for adaptive lighting in operational road tunnels. WSN nodes along the tunnel walls report light readings to a control station, which closes the loop by setting the intensity of lamps to match a legislated curve. The ability to match dynamically the lighting levels to the actual environmental conditions improves the tunnel safety and reduces its power consumption. The use of WSNs in a closed-loop system, combined with the real-world, harsh setting of operational road tunnels, induces tighter requirements on the quality and timeliness of sensed data, as well as on the reliability and lifetime of the network. In this work, we test to what extent mainstream WSN technology meets these challenges, using a dedicated design that however relies on wellestablished techniques. The paper describes the hw/sw architecture we devised by focusing on the WSN component, and analyzes its performance through experiments in a real, operational tunnel

    PMU-Based ROCOF Measurements: Uncertainty Limits and Metrological Significance in Power System Applications

    Full text link
    In modern power systems, the Rate-of-Change-of-Frequency (ROCOF) may be largely employed in Wide Area Monitoring, Protection and Control (WAMPAC) applications. However, a standard approach towards ROCOF measurements is still missing. In this paper, we investigate the feasibility of Phasor Measurement Units (PMUs) deployment in ROCOF-based applications, with a specific focus on Under-Frequency Load-Shedding (UFLS). For this analysis, we select three state-of-the-art window-based synchrophasor estimation algorithms and compare different signal models, ROCOF estimation techniques and window lengths in datasets inspired by real-world acquisitions. In this sense, we are able to carry out a sensitivity analysis of the behavior of a PMU-based UFLS control scheme. Based on the proposed results, PMUs prove to be accurate ROCOF meters, as long as the harmonic and inter-harmonic distortion within the measurement pass-bandwidth is scarce. In the presence of transient events, the synchrophasor model looses its appropriateness as the signal energy spreads over the entire spectrum and cannot be approximated as a sequence of narrow-band components. Finally, we validate the actual feasibility of PMU-based UFLS in a real-time simulated scenario where we compare two different ROCOF estimation techniques with a frequency-based control scheme and we show their impact on the successful grid restoration.Comment: Manuscript IM-18-20133R. Accepted for publication on IEEE Transactions on Instrumentation and Measurement (acceptance date: 9 March 2019

    Algorithms to Improve Performance of Wide Area Measurement Systems of Electric Power Systems

    Get PDF
    Power system operation has become increasingly complex due to high load growth and increasing market pressure. The occurrence of major blackouts in many power systems around the world has necessitated the use of synchrophasor based Wide Area Measurement Systems (WAMS) for grid monitoring. Synchrophasor technology is comparatively new in the area of power systems. Phasor measurement units (PMUs) and phasor data concentrators (PDCs) are new to the substations and control centers. Even though PMUs have been installed in many power grids, the number of installed PMUs is still low with respect to the number of buses or lines. Currently, WAMS systems face many challenges. This thesis is an attempt towards solving some of the technical problems faced by the WAMS systems. This thesis addresses four problems related to synchrophasor estimation, synchrophasor quality detection, synchrophasor communication and synchrophasor application. In the first part, a synchrophasor estimation algorithm has been proposed. The proposed algorithm is simple, requires lesser computations, and satisfies all the steady state and dynamic performance criteria of the IEEE Standard C37.118.1-2011 and also suitable for protection applications. The proposed algorithm performs satisfactorily during system faults and it has lower response time during larger disturbances. In the second part, areas of synchrophasor communication which can be improved by applying compressive sampling (CS) are identified. It is shown that CS can reduce bandwidth requirements for WAMS networks. It is also shown that CS can successfully reconstruct system dynamics at higher rates using synchrophasors reported at sub-Nyquist rate. Many synchrophasor applications are not designed to use fault/switching transient synchrophasors. In this thesis, an algorithm has been proposed to detect fault/switching transient synchrophasors. The proposed algorithm works satisfactorily during smaller and larger step changes, oscillations and missing data. Fault transient synchrophasors are not usable in WAMS applications as they represent a combination of fault and no-fault scenario. In the fourth part, two algorithms have been proposed to extract fault synchrophasor from fault transient synchrophasor in PDC. The proposed algorithms extract fault synchrophasors accurately in presence of noise, off-nominal frequencies, harmonics, and frequency estimation errors

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Fast synchronization 3R burst-mode receivers for passive optical networks

    Get PDF
    This paper gives a tutorial overview on high speed burst-mode receiver (BM-RX) requirements, specific for time division multiplexing passive optical networks, and design issues of such BM-RXs as well as their advanced design techniques. It focuses on how to design BM-RXs with short burst overhead for fast synchronization. We present design principles and circuit architectures of various types of burst-mode transimpedance amplifiers, burst-mode limiting amplifiers and burst-mode clock and data recovery circuits. The recent development of 10 Gb/s BM-RXs is highlighted also including dual-rate operation for coexistence with deployed PONs and on-chip auto reset generation to eliminate external timing-critical control signals provided by a PON medium access control. Finally sub-system integration and state-of-the-art system performance for 10 Gb/s PONs are reviewed

    NON-INTRUSIVE LOAD MONITORING USING CURRENT HARMONIC VECTORS AND ADAPTIVE FEATURE SELECTION

    Get PDF
    The non-intrusive load monitoring method presented in this paper uses changes in current harmonic vectors to identify the operational state of appliances. The algorithm based on this feature has low complexity, but it may suffer from an information loss caused by a random fluctuation of the current harmonic vectors. In order to deal with this problem, we propose the algorithm which includes a stage which identifies and select a subset of relevant features in the set of available appliance features. The proposed load disaggregation algorithm is demonstrated through experiments on a representative set of household appliances

    A method of detecting radio transients

    Full text link
    Radio transients are sporadic signals and their detection requires that the backends of radio telescopes be equipped with the appropriate hardware and software to undertake this. Observational programs to detect transients can be dedicated or they can piggy-back on observations made by other programs. It is the single-dish single-transient (non-periodical) mode which is considered in this paper. Because neither the width of a transient nor the time of its arrival is known, a sequential analysis in the form of a cumulative sum (cusum) algorithm is proposed here. Computer simulations and real observation data processing are included to demonstrate the performance of the cusum. The use of the Hough transform is here proposed for the purpose of non-coherent de-dispersion. It is possible that the detected transients could be radio frequency interferences (RFI) and a procedure is proposed here which can distinguish between celestial signals and man-made RFI. This procedure is based on an analysis of the statistical properties of the signals
    • ā€¦
    corecore