42,689 research outputs found

    Fast characterization of input-output behavior of non-charge-based logic devices by machine learning

    Get PDF
    Non-charge-based logic devices are promising candidates for the replacement of conventional complementary metal-oxide semiconductors (CMOS) devices. These devices utilize magnetic properties to store or process information making them power efficient. Traditionally, to fully characterize the input-output behavior of these devices a large number of micromagnetic simulations are required, which makes the process computationally expensive. Machine learning techniques have been shown to dramatically decrease the computational requirements of many complex problems. We use state-of-the-art data-efficient machine learning techniques to expedite the characterization of their behavior. Several intelligent sampling strategies are combined with machine learning (binary and multi-class) classification models. These techniques are applied to a magnetic logic device that utilizes direct exchange interaction between two distinct regions containing a bistable canted magnetization configuration. Three classifiers were developed with various adaptive sampling techniques in order to capture the input-output behavior of this device. By adopting an adaptive sampling strategy, it is shown that prediction accuracy can approach that of full grid sampling while using only a small training set of micromagnetic simulations. Comparing model predictions to a grid-based approach on two separate cases, the best performing machine learning model accurately predicts 99.92% of the dense test grid while utilizing only 2.36% of the training data respectively

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    EyeRIS: A General-Purpose System for Eye Movement Contingent Display Control

    Full text link
    In experimental studies of visual performance, the need often emerges to modify the stimulus according to the eye movements perfonncd by the subject. The methodology of Eye Movement-Contingent Display (EMCD) enables accurate control of the position and motion of the stimulus on the retina. EMCD procedures have been used successfully in many areas of vision science, including studies of visual attention, eye movements, and physiological characterization of neuronal response properties. Unfortunately, the difficulty of real-time programming and the unavailability of flexible and economical systems that can be easily adapted to the diversity of experimental needs and laboratory setups have prevented the widespread use of EMCD control. This paper describes EyeRIS, a general-purpose system for performing EMCD experiments on a Windows computer. Based on a digital signal processor with analog and digital interfaces, this integrated hardware and software system is responsible for sampling and processing oculomotor signals and subject responses and modifying the stimulus displayed on a CRT according to the gaze-contingent procedure specified by the experimenter. EyeRIS is designed to update the stimulus within a delay of 10 ms. To thoroughly evaluate EyeRIS' perforltlancc, this study (a) examines the response of the system in a number of EMCD procedures and computational benchmarking tests, (b) compares the accuracy of implementation of one particular EMCD procedure, retinal stabilization, to that produced by a standard tool used for this task, and (c) examines EyeRIS' performance in one of the many EMCD procedures that cannot be executed by means of any other currently available device.National Institute of Health (EY15732-01

    Compressive Wavefront Sensing with Weak Values

    Get PDF
    We demonstrate a wavefront sensor based on the compressive sensing, single-pixel camera. Using a high-resolution spatial light modulator (SLM) as a variable waveplate, we weakly couple an optical field's transverse-position and polarization degrees of freedom. By placing random, binary patterns on the SLM, polarization serves as a meter for directly measuring random projections of the real and imaginary components of the wavefront. Compressive sensing techniques can then recover the wavefront. We acquire high quality, 256x256 pixel images of the wavefront from only 10,000 projections. Photon-counting detectors give sub-picowatt sensitivity
    • …
    corecore