135 research outputs found

    Resource Allocation in 4G and 5G Networks: A Review

    Get PDF
    The advent of 4G and 5G broadband wireless networks brings several challenges with respect to resource allocation in the networks. In an interconnected network of wireless devices, users, and devices, all compete for scarce resources which further emphasizes the fair and efficient allocation of those resources for the proper functioning of the networks. The purpose of this study is to discover the different factors that are involved in resource allocation in 4G and 5G networks. The methodology used was an empirical study using qualitative techniques by performing literature reviews on the state of art in 4G and 5G networks, analyze their respective architectures and resource allocation mechanisms, discover parameters, criteria and provide recommendations. It was observed that resource allocation is primarily done with radio resource in 4G and 5G networks, owing to their wireless nature, and resource allocation is measured in terms of delay, fairness, packet loss ratio, spectral efficiency, and throughput. Minimal consideration is given to other resources along the end-to-end 4G and 5G network architectures. This paper defines more types of resources, such as electrical energy, processor cycles and memory space, along end-to-end architectures, whose allocation processes need to be emphasized owing to the inclusion of software defined networking and network function virtualization in 5G network architectures. Thus, more criteria, such as electrical energy usage, processor cycle, and memory to evaluate resource allocation have been proposed.  Finally, ten recommendations have been made to enhance resource allocation along the whole 5G network architecture

    Performance modelling of network management schemes for mobile wireless networks

    Get PDF

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    A quality of service architecture for WLAN-wired networks to enhance multimedia support

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 77-84).The use of WLAN for the provision of IP multimedia services faces a number of challenges which include quality of service (QoS). Because WLAN users access multimedia services usually over a wired backbone, attention must be paid to QoS over the integrated WLAN-wired network. This research focuses on the provision of QoS to WLAN users accessing multimedia services over a wired backbone. In this thesis, the IEEE 802.11-2007 enhanced data channel access (EDCA) mechanism is used to provide prioritized QoS on the WLAN media access control (MAC) layer, while weighted round robin (WRR) queue scheduling is used to provide prioritized QoS at the IP layer. The inter-working of the EDCA scheme in the WLAN and the WRR scheduling scheme in the wired network provides end-to-end QoS on a WLAN-wired IP network. A mapping module is introduced to enable the inter-working of the EDCA and WRR mechanisms

    IP-based virtual private networks and proportional quality of service differentiation

    Get PDF
    IP-based virtual private networks (VPNs) have the potential of delivering cost-effective, secure, and private network-like services. Having surveyed current enabling techniques, an overall picture of IP VPN implementations is presented. In order to provision the equivalent quality of service (QoS) of legacy connection-oriented layer 2 VPNs (e.g., Frame Relay and ATM), IP VPNs have to overcome the intrinsically best effort characteristics of the Internet. Subsequently, a hierarchical QoS guarantee framework for IP VPNs is proposed, stitching together development progresses from recent research and engineering work. To differentiate IP VPN QoS, the proportional QoS differentiation model, whose QoS specification granularity compromises that of IntServ and Diffserv, emerges as a potential solution. The investigation of its claimed capability of providing the predictable and controllable QoS differentiation is then conducted. With respect to the loss rate differentiation, the packet shortage phenomenon shown in two classical proportional loss rate (PLR) dropping schemes is studied. On the pursuit of a feasible solution, the potential of compromising the system resource, that is, the buffer, is ruled out; instead, an enhanced debt-aware mechanism is suggested to relieve the negative effects of packet shortage. Simulation results show that debt-aware partially curbs the biased loss rate ratios, and improves the queueing delay performance as well. With respect to the delay differentiation, the dynamic behavior of the average delay difference between successive classes is first analyzed, aiming to gain insights of system dynamics. Then, two classical delay differentiation mechanisms, that is,proportional average delay (PAD) and waiting time priority (WTP), are simulated and discussed. Based on observations on their differentiation performances over both short and long time periods, a combined delay differentiation (CDD) scheme is introduced. Simulations are utilized to validate this method. Both loss and delay differentiations are based on a series of differentiation parameters. Though previous work on the selection of delay differentiation parameters has been presented, that of loss differentiation parameters mostly relied on network operators\u27 experience. A quantitative guideline, based on the principles of queueing and optimization, is then proposed to compute loss differentiation parameters. Aside from analysis, the new approach is substantiated by numerical results

    Quality of service support for multimedia applications in mobile ad hoc networks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A QoS-aware architecture for mobile internet

    Get PDF
    Tese de doutoramento InformáticaHoje em dia, as pessoas pretendem ter simultaneamente mobilidade, qualidade de serviço e estar sempre connectados à Internet. No intuito, de satisfazer estes clientes muito exigentes, os mercados das telecomunicações estão a impor novos e dificeis desafios às redes móveis, através da demanda, de heterogeneidade em termos de tecnologias de acesso rádio, novos serviços, niveis de qualidade de serviço adequados aos requisitos das aplicações de tempo real, elevada taxa de utilização do recursos disponiveis e melhor capacidade de desempenho. A Internet foi concebida para fornecer serviços sem qualquer tipo de garantias de qualidade às aplicações, apenas se comprometendo em oferecer o melhor serviço possível. No entanto, nos útlimos anos diversos esforços foram levados a cabo no sentido de dotar a Internet com o suporte à qualidade de serviço. Dos esforços desenvolvidos resultaram dois paradigmas para o suporte da qualidade de serviço: o modelo de Serviços Integrados (Integrated Services - IntServ) e o modelo de Serviços Diferenciados (Differentiated Services - DiffServ). Todavia, estes modelos de qualidade de serviço (QoS) foram concebido antes da existência da Internet móvel, portanto o desenvolvimento destes modelos não teve em consideração a questão da mobilidade. Por outro lado, o protocolo padrão actual para a Internet móvel, o MIPv6, revela algumas limitações nos cenários onde os utilizadores estão constantemente a moverem-se para outros pontos de acesso. Neste tipo de cenários, o MIPv6 introduz tempos de latência que não são sustentáveis para aplicações com requisitos de QoS mais restritos. Os factos revelados, demonstram que existe uma emergente necessidade de adaptar o actual protocolo de mobilidade, e também de adaptar os modelos de QoS, ou então criar modelos alternativos de QoS, para satisfazer às exigências do utilizador de hoje de redes móveis. Para alcançar este objectivo o presente trabalho propõe melhorias no sistema de gestão da mobilidade do protocolo MIPv6 e na gestão de recursos do modelo DiffServ. O MIPv6 foi melhorado para os cenários de micro-mobilidade com a abordagem para micro-mobilidade do F-HMIPv6. Enquanto que, o modelo DiffServ foi melhorado para os ambientes móveis com funcionalidades dinâmicas e adaptativas através da utilização de sinalização de QoS e da gestão distribuida dos recursos. A gestão da mobilidade e dos recursos foi também acoplada na solução proposta com o propósito de optimizar a utilização dos recursos num meio onde os recursos são tipicamente escassos. O modelo proposto é simples, é de fácil implementação, tem em consideração os requisitos da Internet móvel, e provou ser eficiente e capaz de fornecer serviços com QoS de elevada fiabilidade às aplicações.Over the last few years, several network communication challenges have arisen as a result of the growing number of users demanding Quality of Service (QoS) and mobility simultaneously. In order to satisfy these very demanding customers, the markets are imposing new challenges to wireless networks by demanding heterogeneity in terms of wireless access technologies, new services, suited QoS levels to real-time applications, high usability and improved performance. However, the Internet has been designed for providing application services without quality guarantees. That explains why, in the last years several efforts have been made to endow Internet with QoS support. From the developed efforts have resulted two QoS paradigms: Integrated Services (IntServ) which offers the guaranteed service model and the Differentiated Services (DiffServ) which offers the predictive service model. Although these QoS models have been designed before the existence of mobile Internet, so they do not consider the mobility issue. For instance, the guaranteed service model requires that whenever a Mobile Node (MN) wants to move to a new location, the allocated resources in the old path must be released and a new resource reservation in a new path must be made, resulting in extra signaling overhead, heavy processing and state load. Therefore, if handovers are frequent, large mobility and QoS signaling messages will be created in the access networks. Consequently, significant scalability problems may arise with this type of service model. The predicted service model, on the other hand, requires an additional features such as dynamic and adaptive resource management in order to be efficient in a very dynamic network such as a mobile network. A QoS solution for mobile environments must provide the capacity to adapt its resource utilization to a changeable nature of wireless networks because they have a more dynamic behavior due to incoming or outgoing handovers. For this reason, a QoS signalization for dynamic resource provisioning is necessary in order to supply adequate QoS levels to mobile users. On the other hand, the current standard protocol for mobile Internet, Mobile IPv6 (MIPv6), reveals limitations in scenarios where users are constantly moving to another point of attachment. In these situations, MIPv6 introduces latency times that are not sustainable for applications with strict QoS requirements. All things considered, reveal the emerging need to adapt the current standard mobility protocol and QoS models to satisfy today’s mobile user’s requirements. To accomplish this goal, the present work proposes enhancements in terms of the MIPv6 protocol mobility management scheme as well as in DiffServ QoS model resource management. The former was enhanced for micro-mobility scenarios with a specific combination of FMIPv6 (Fast Mobile IPv6) and HMIPv6 (Hierarchical Mobile IPv6) protocols. Whereas, the latter was enhanced for mobile environments with dynamic and adaptive features by using QoS signalization as well as distributed resource management. The mobility and resource management has also been coupled in the proposed solution with the objective of optimizing the resource utilization in a environment where resources are typically scarce. In order to assess model performance as well as its parametrization, a simulation model has been designed and implemented in the Network Simulator version two (NS-2). The model´s performance evaluation has been conducted based on the respective data acquired from statistical analysis in order to validate and consolidate the conclusions. Simulation results indicate that the solution avoids network congestion and starvation of less priority DiffServ classes. Moreover, the results also indicate that bandwidth utilization for priority classes increases and the QoS offered to MN’s applications, in each DiffServ class, remains unchangeable with MN mobility. The proposed model is simple and easy to implement. It considers mobile Internet requirements and has proven to be effective and capable of providing services with highly reliable QoS to mobile applications.Fundação para a Ciência e a Tecnologia (FCT) - Bolsa SFRH/BD/35245/200
    • …
    corecore