1,607 research outputs found

    A Survey on QoE-oriented Wireless Resources Scheduling

    Full text link
    Future wireless systems are expected to provide a wide range of services to more and more users. Advanced scheduling strategies thus arise not only to perform efficient radio resource management, but also to provide fairness among the users. On the other hand, the users' perceived quality, i.e., Quality of Experience (QoE), is becoming one of the main drivers within the schedulers design. In this context, this paper starts by providing a comprehension of what is QoE and an overview of the evolution of wireless scheduling techniques. Afterwards, a survey on the most recent QoE-based scheduling strategies for wireless systems is presented, highlighting the application/service of the different approaches reported in the literature, as well as the parameters that were taken into account for QoE optimization. Therefore, this paper aims at helping readers interested in learning the basic concepts of QoE-oriented wireless resources scheduling, as well as getting in touch with its current research frontier.Comment: Revised version: updated according to the most recent related literature; added references; corrected typo

    Adaptive Closed Loop OFDM-Based Resource Allocation Method using Machine Learning and Genetic Algorithm

    Full text link
    In this paper, the concept of Machine Learning (ML) is introduced to the Orthogonal Frequency Division Multiple Access-based (OFDMA-based) scheduler. Similar to the impact of the Channel Quality Indicator (CQI) on the scheduler in the Long Term Evolution (LTE), ML is utilized to provide the scheduler with pertinent information about the User Equipment (UE) traffic patterns, demands, Quality of Service (QoS) requirements, instantaneous user throughput and other network conditions. An adaptive ML-based framework is proposed in order to optimize the LTE scheduler operation. The proposed technique targets multiple objective scheduling strategies. The weights of the different objectives are adjusted to optimize the resources allocation per transmission based on the UEs demand pattern. In addition, it overcomes the trade-off problem of the traditional scheduling methods. The technique can be used as a generic framework with any scheduling strategy. In this paper, Genetic Algorithm-based (GA-based) multi- objective scheduler is considered to illustrate the efficiency of the proposed adaptive scheduling solution. Results show that using the combination of clustering and classification algorithms along with the GA optimizes the GA scheduler functionality and makes use of the ML process to form a closed loop scheduling mechanism.Comment: 6 page

    An Efficient Multi-Carrier Resource Allocation with User Discrimination Framework for 5G Wireless Systems

    Full text link
    In this paper, we present an efficient resource allocation with user discrimination framework for 5G Wireless Systems to allocate multiple carriers resources among users with elastic and inelastic traffic. Each application running on the user equipment (UE) is assigned an application utility function. In the proposed model, different classes of user groups are considered and users are partitioned into different groups based on the carriers coverage area. Each user has a minimum required application rate based on its class and the type of its application. Our objective is to allocate multiple carriers resources optimally among users, that belong to different classes, located within the carriers' coverage area. We use a utility proportional fairness approach in the utility percentage of the application running on the UE. Each user is guaranteed a minimum quality of service (QoS) with a priority criterion that is based on user's class and the type of application running on the UE. In addition, we prove the existence of optimal solutions for the proposed resource allocation optimization problem and present a multi-carrier resource allocation with user discrimination algorithm. Finally, we present simulation results for the performance of the proposed algorithm.Comment: Under Submissio

    Dynamic Joint Uplink and Downlink Optimization for Uplink and Downlink Decoupling-Enabled 5G Heterogeneous Networks

    Full text link
    The concept of user-centric and personalized service in the fifth generation (5G) mobile networks encourages technical solutions such as dynamic asymmetric uplink/downlink resource allocation and elastic association of cells to users with decoupled uplink and downlink (DeUD) access. In this paper we develop a joint uplink and downlink optimization algorithm for DeUD-enabled wireless networks for adaptive joint uplink and downlink bandwidth allocation and power control, under different link association policies. Based on a general model of inter-cell interference, we propose a three-step optimization algorithm to jointly optimize the uplink and downlink bandwidth allocation and power control, using the fixed point approach for nonlinear operators with or without monotonicity, to maximize the minimum level of quality of service satisfaction per link, subjected to a general class of resource (power and bandwidth) constraints. We present numerical results illustrating the theoretical findings for network simulator in a real-world setting, and show the advantage of our solution compared to the conventional proportional fairness resource allocation schemes in both the coupled uplink and downlink (CoUD) access and the novel link association schemes in DeUD.Comment: 17 pages, 8 figure

    Multiuser Video Streaming Rate Adaptation: A Physical Layer Resource-Aware Deep Reinforcement Learning Approach

    Full text link
    We consider a multi-user video streaming service optimization problem over a time-varying and mutually interfering multi-cell wireless network. The key research challenge is to appropriately adapt each user's video streaming rate according to the radio frequency environment (e.g., channel fading and interference level) and service demands (e.g., play request), so that the users' long-term experience for watching videos can be optimized. To address the above challenge, we propose a novel two-level cross-layer optimization framework for multiuser adaptive video streaming over wireless networks. The key idea is to jointly design the physical layer optimization-based beamforming scheme (performed at the base stations) and the application layer Deep Reinforcement Learning (DRL)-based scheme (performed at the user terminals), so that a highly complex multi-user, cross-layer, time-varying video streaming problem can be decomposed into relatively simple problems and solved effectively. Our strategy represents a significant departure for the existing schemes where either short-term user experience optimization is considered, or only single-user point-to-point long-term optimization is considered. Extensive simulations based on real-data sets show that the proposed cross-layer design is effective and promising.Comment: 29 pages, 7 figures, 5 table

    Traffic offloading in future, heterogeneous mobile networks

    Get PDF
    The rise of third-party content providers and the introduction of numerous applications has been driving the growth of mobile data traffic in the past few years. In order to tackle this challenge, Mobile Network Operators (MNOs) aim to increase their networks' capacity by expanding their infrastructure, deploying more Base Stations (BSs). Particularly, the creation of Heterogeneous Networks (HetNets) and the application of traffic offloading through the dense deployment of low-power BSs, the small cells (SCs), is one promising solution to address the aforementioned explosive data traffic increase. Due to their financial implementation requirements, which could not be met by the MNOs, the emergence of third parties that deploy small cell networks creates new business opportunities. Thus, the investigation of frameworks that facilitate the implementation of outsourced traffic offloading, the collaboration and the transactions among MNOs and third-party small cell owners, as well as the provision of participation incentives for all stakeholders is essential for the deployment of the necessary new infrastructure and capacity expansion. The aforementioned emergence of third-party content providers and their applications not only drives the increase in mobile data traffic, but also create new Quality of Service (QoS) as well as Quality of Experience (QoE) requirements that the MNOs need to guarantee for the satisfaction of their subscribers. Moreover, even though the MNOs accommodate this traffic, they do not get any monetary compensation or subsidization for the required capacity expansion. On the contrary, their revenues reduce continuously. To that end, it is necessary to research and design network and economic functionalities adapted to the new requirements, such as QoE-aware Radio Resource Management and Dynamic Pricing (DP) strategies, which both guarantee the subscriber satisfaction and maximization the MNO profit (to compensate the diminished MNOs' revenues and the increasing deployment investment). Following a thorough investigation of the state-of-the-art, a set of research directions were identified. This dissertation consists of contributions on network sharing and outsourced traffic offloading for the capacity enhancement of MNO networks, and the design of network and economic functions for the sustainable deployment and use of the densely constructed HetNets. The contributions of this thesis are divided into two main parts, as described in the following. The first part of the thesis introduces an innovative approach on outsourced traffic offloading, where we present a framework for the Multi-Operator Radio Access Network (MORAN) sharing. The proposed framework is based on an auction scheme used by a monopolistic Small Cell Operator (SCO), through which he leases his SC infrastructure to MNOs. As the lack of information on the future offered load and the auction strategies creates uncertainty for the MNOs, we designed a learning mechanism that assists the MNOs in their bid-placing decisions. Our simulations show that our proposal almost maximizes the social welfare, satisfying the involved stakeholders and providing them with participation incentives. The second part of the thesis researches the use of network and economic functions for MNO profit maximization, while guaranteeing the users' satisfaction. Particularly, we designed a model that accommodates a plethora of services with various QoS and QoE requirements, as well as diverse pricing, that is, various service prices and different charging schemes. In this model, we proposed QoE-aware user association, resource allocation and joint resource allocation and dynamic pricing algorithms, which exploit the QoE-awareness and the network's economic aspects, such as the profit. Our simulations have shown that our proposals gain substantial more profit compared to traditional and state-of-the-art solutions, while providing a similar or even better network performance.El aumento de los proveedores de contenido de terceros y la introducción de numerosas aplicaciones ha impulsado el crecimiento del tráfico de datos en redes móviles en los últimos años. Para hacer frente a este desafío, los operadores de redes móviles (Mobile Network Operators, MNOs) apuntan a aumentar la capacidad de sus redes mediante la expansión de su infraestructura y el despliegue de más estaciones base (BS). Particularmente, la creación de Redes Heterogéneas (Heterogenous Networks, HetNets) y la aplicación de descarga de tráfico a través del despliegue denso de BSs de baja potencia, las células pequeñas (small cells, SCs), es una solución prometedora para abordar el aumento del tráfico de datos explosivos antes mencionado. Debido a sus requisitos de implementación financiera, que los MNO no pudieron cumplir, la aparición de terceros que implementan redes de células pequeñas crea nuevas oportunidades comerciales. Por lo tanto, la investigación de marcos que faciliten la implementación de la descarga tercerizada de tráfico, la colaboración y las transacciones entre MNOs y terceros propietarios de células pequeñas, así como la provisión de incentivos de participación para todas las partes interesadas esencial para el despliegue de la nueva infraestructura necesaria y la expansión de la capacidad. La aparición antes mencionada de proveedores de contenido de terceros y sus aplicaciones no solo impulsa el aumento del tráfico de datos móviles, sino también crea nuevos requisitos de calidad de servicio (Quality of Service, QoS) y calidad de la experiencia (Quality of Experience, QoE) que los operadores de redes móviles deben garantizar para la satisfacción de sus suscriptores. Además, a pesar de que los operadores de redes móviles adaptan este tráfico, no obtienen ninguna compensación monetaria o subsidio por la expansión de capacidad requerida. Por el contrario, sus ingresos se reducen continuamente. Para ello, es necesario investigar y diseñar funcionalidades económicas y de red adaptadas a los nuevos requisitos, tales como las estrategias QoE-conscientes de gestión de recursos de radio y de precios dinámicos (Dynamic Pricing, DP), que garantizan la satisfacción del abonado y la maximización de la ganancia de operador móvil (para compensar los ingresos de los MNOs disminuidos y la creciente inversión de implementación). Después de una investigación exhaustiva del estado del arte, se identificaron un conjunto de direcciones de investigación. Esta disertación consiste en contribuciones sobre el uso compartido de redes y la descarga tercerizada de tráfico para la mejora de la capacidad de redes MNO, y el diseño de funciones económicas y de red para el despliegue y uso sostenible de las HetNets densamente construidas. Las contribuciones de esta tesis se dividen en dos partes principales, como se describe a continuación. La primera parte de la tesis presenta un enfoque innovador sobre la descarga subcontratada de tráfico, en el que presentamos un marco para el uso compartido de la red de acceso de radio de múltiples operadores (Multi-Operator RAN, MORAN). El marco propuesto se basa en un esquema de subasta utilizado por un operador monopólico de celda pequeña (Small Cell Operator, SCO), a través del cual arrienda su infraestructura SC a MNOs. Como la falta de información sobre la futura carga de red y las estrategias de subasta creaban incertidumbre para los MNO, diseñamos un mecanismo de aprendizaje que asiste a los MNO en sus decisiones de colocación de pujas. Nuestras simulaciones muestran que nuestra propuesta casi maximiza el bienestar social, satisfaciendo a las partes interesadas involucradas y proporcionándoles incentivos de participación. La segunda parte de la tesis investiga el uso de las funciones económicas y de red para la maximización de los beneficios de los MNOs, al tiempo que garantiza la satisfacción de los usuarios. Particularmente, diseñamos un modelo que acomoda una gran cantidad de servicios con diversos requisitos de QoS y QoE, tanto como diversos precios, es decir, varios precios de servicio y diferentes esquemas de cobro. En este modelo, propusimos algoritmos QoE-conscientes para asociación de usuarios, asignación de recursos y conjunta asignación de recursos y de fijación dinámica de precios, que explotan la conciencia de QoE y los aspectos económicos de la red, como la ganancia. Nuestras simulaciones han demostrado que nuestras propuestas obtienen un beneficio sustancial en comparación con las soluciones tradicionales y del estado del arte, a la vez que proporcionan un rendimiento de red similar o incluso mejor.Postprint (published version

    Greedy-Knapsack Algorithm for Optimal Downlink Resource Allocation in LTE Networks

    Full text link
    The Long Term Evolution (LTE) as a mobile broadband technology supports a wide domain of communication services with different requirements. Therefore, scheduling of all flows from various applications in overload states in which the requested amount of bandwidth exceeds the limited available spectrum resources is a challenging issue. Accordingly, in this paper, a greedy algorithm is presented to evaluate user candidates which are waiting for scheduling and select an optimal set of the users to maximize system performance, without exceeding available bandwidth capacity. The greedy-knapsack algorithm is defined as an optimal solution to the resource allocation problem, formulated based on the fractional knapsack problem. A compromise between throughput and QoS provisioning is obtained by proposing a class-based ranking function, which is a combination of throughput and QoS related parameters defined for each application. The simulation results show that the proposed method provides high performance in terms of throughput, loss and delay for different classes of QoS over the existing ones, especially under overload traffic.Comment: Wireless Networks, 201

    DR9.3 Final report of the JRRM and ASM activities

    Get PDF
    Deliverable del projecte europeu NEWCOM++This deliverable provides the final report with the summary of the activities carried out in NEWCOM++ WPR9, with a particular focus on those obtained during the last year. They address on the one hand RRM and JRRM strategies in heterogeneous scenarios and, on the other hand, spectrum management and opportunistic spectrum access to achieve an efficient spectrum usage. Main outcomes of the workpackage as well as integration indicators are also summarised.Postprint (published version

    Scheduling for VoLTE: Resource Allocation Optimization and Low-Complexity Algorithms

    Full text link
    We consider scheduling and resource allocation in long-term evolution (LTE) networks across voice over LTE (VoLTE) and best-effort data users. The difference between these two is that VoLTE users get scheduling priority to receive their required quality of service. As we show, strict priority causes data services to suffer. We propose new scheduling and resource allocation algorithms to maximize the sum- or proportional fair (PF) throughout amongst data users while meeting VoLTE demands. Essentially, we use VoLTE as an example application with both a guaranteed bit-rate and strict application-specific requirements. We first formulate and solve the frame-level optimization problem for throughput maximization; however, this leads to an integer problem coupled across the LTE transmission time intervals (TTIs). We then propose a TTI-level problem to decouple scheduling across TTIs. Finally, we propose a heuristic, with extremely low complexity. The formulations illustrate the detail required to realize resource allocation in an implemented standard. Numerical results show that the performance of the TTI-level scheme is very close to that of the frame-level upper bound. Similarly, the heuristic scheme works well compared to TTI-level optimization and a baseline scheduling algorithm. Finally, we show that our PF optimization retains the high fairness index characterizing PF-scheduling

    A Particle Filtering Approach for Enabling Distributed and Scalable Sharing of DSA Network Resources

    Full text link
    Handling the massive number of devices needed in numerous applications such as smart cities is a major challenge given the scarcity of spectrum resources. Dynamic spectrum access (DSA) is seen as a potential candidate to support the connectivity and spectrum access of these devices. We propose an efficient technique that relies on particle filtering to enable distributed resource allocation and sharing for large-scale dynamic spectrum access networks. More specifically, we take advantage of the high tracking capability of particle filtering to efficiently assign the available spectrum and power resources among cognitive users. Our proposed technique maximizes the per-user throughput while ensuring fairness among users, and it does so while accounting for the different users' quality of service requirements and the channel gains' variability. Through intensive simulations, we show that our proposed approach performs well by achieving high overall throughput while improving user's fairness under different objective functions. Furthermore, it achieves higher performance when compared to state-of-the-art techniques
    corecore