1,981 research outputs found

    Wavelet domain image restoration using adaptively regularized constrained total least squares

    Get PDF
    This thesis is concerned with image restoration techniques using adaptively regularized constrained total least squares (ARCTLS) and wavelet transforms. The objective of the thesis is to improve the conventional ARCTLS algorithm by exploiting the subband properties of both the degraded image and the point spread function (PSF) of the degradation system. First of all, two most frequently used restoration algorithms, namely, the regularized constrained total least squares (RCTLS) and its adaptive version (ARCTLS) are investigated. The solutions of the two techniques in the DFT domain are emphasized in order to reduce the computational complexity. It is shown that both techniques are very suitable for the degradation situation where the (PSF) and the observed degraded image are subject to the same type of error. Secondly, a wavelet-domain image restoration technique using ARCTLS is presented. The 1-D and 2-D wavelet transform matrix representations are formulated for both the degraded image and the degradation convolution operator. A class of orthonormal wavelet based quadrature mirror filter bank is investigated and applied to the subband decomposition of the degraded image and the PSF as well such that the conventional ARCTLS algorithm can be employed for each subband image restoration

    On the filtering effect of iterative regularization algorithms for linear least-squares problems

    Full text link
    Many real-world applications are addressed through a linear least-squares problem formulation, whose solution is calculated by means of an iterative approach. A huge amount of studies has been carried out in the optimization field to provide the fastest methods for the reconstruction of the solution, involving choices of adaptive parameters and scaling matrices. However, in presence of an ill-conditioned model and real data, the need of a regularized solution instead of the least-squares one changed the point of view in favour of iterative algorithms able to combine a fast execution with a stable behaviour with respect to the restoration error. In this paper we want to analyze some classical and recent gradient approaches for the linear least-squares problem by looking at their way of filtering the singular values, showing in particular the effects of scaling matrices and non-negative constraints in recovering the correct filters of the solution

    A hybrid algorithm for spatial and wavelet domain image restoration

    Get PDF
    The recent algorithm ForWaRD based on the two steps: (i) the Fourier domain deblurring and (ii) wavelet domain denoising, shows better restoration results than those using traditional image restoration methods. In this paper, we study other deblurring schemes in ForWaRD and demonstrate such two-step approach is effective for image restoration.published_or_final_versionS P I E Conference on Visual Communications and Image Processing 2005, Beijing, China, 12-15 July 2005. In Proceedings Of Spie - The International Society For Optical Engineering, 2005, v. 5960 n. 4, p. 59605V-1 - 59605V-

    A new steplength selection for scaled gradient methods with application to image deblurring

    Get PDF
    Gradient methods are frequently used in large scale image deblurring problems since they avoid the onerous computation of the Hessian matrix of the objective function. Second order information is typically sought by a clever choice of the steplength parameter defining the descent direction, as in the case of the well-known Barzilai and Borwein rules. In a recent paper, a strategy for the steplength selection approximating the inverse of some eigenvalues of the Hessian matrix has been proposed for gradient methods applied to unconstrained minimization problems. In the quadratic case, this approach is based on a Lanczos process applied every m iterations to the matrix of the most recent m back gradients but the idea can be extended to a general objective function. In this paper we extend this rule to the case of scaled gradient projection methods applied to non-negatively constrained minimization problems, and we test the effectiveness of the proposed strategy in image deblurring problems in both the presence and the absence of an explicit edge-preserving regularization term

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal

    Get PDF
    Unveiling meaningful geophysical information from seismic data requires to deal with both random and structured "noises". As their amplitude may be greater than signals of interest (primaries), additional prior information is especially important in performing efficient signal separation. We address here the problem of multiple reflections, caused by wave-field bouncing between layers. Since only approximate models of these phenomena are available, we propose a flexible framework for time-varying adaptive filtering of seismic signals, using sparse representations, based on inaccurate templates. We recast the joint estimation of adaptive filters and primaries in a new convex variational formulation. This approach allows us to incorporate plausible knowledge about noise statistics, data sparsity and slow filter variation in parsimony-promoting wavelet frames. The designed primal-dual algorithm solves a constrained minimization problem that alleviates standard regularization issues in finding hyperparameters. The approach demonstrates significantly good performance in low signal-to-noise ratio conditions, both for simulated and real field seismic data

    An Improved Observation Model for Super-Resolution under Affine Motion

    Full text link
    Super-resolution (SR) techniques make use of subpixel shifts between frames in an image sequence to yield higher-resolution images. We propose an original observation model devoted to the case of non isometric inter-frame motion as required, for instance, in the context of airborne imaging sensors. First, we describe how the main observation models used in the SR literature deal with motion, and we explain why they are not suited for non isometric motion. Then, we propose an extension of the observation model by Elad and Feuer adapted to affine motion. This model is based on a decomposition of affine transforms into successive shear transforms, each one efficiently implemented by row-by-row or column-by-column 1-D affine transforms. We demonstrate on synthetic and real sequences that our observation model incorporated in a SR reconstruction technique leads to better results in the case of variable scale motions and it provides equivalent results in the case of isometric motions
    • …
    corecore