18 research outputs found

    Nonlinear self-tuning control for power oscillation damping

    No full text
    Power systems exhibit nonlinear behavior especially during disturbances, necessitating the application of appropriate nonlinear control techniques. Lack of availability of accurate and updated models for the whole power system adds to the challenge. Conventional damping control design approaches consider a single operating condition of the system, which are obviously simple but tend to lack performance robustness. Objective of this research work is to design a measurement based self-tuning controller, which does not rely on accurate models and deals with nonlinearities in system response. Designed controller is required to ensure settling of inter-area oscillations within 10−12s, following disturbance such as a line outage. The neural network (NN) model is illustrated for the representation of nonlinear power systems. An optimization based algorithm, Levenberg-Marquardt (LM), for online estimation of power system dynamic behavior is proposed in batch mode to improve the model estimation. Careful study shows that the LM algorithm yields better closed loop performance, compared to conventional recursive least square (RLS) approach with the pole-shifting controller (PSC) in linear framework. Exploiting the capability of LM, a special form of neural network compatible with feedback linearization technique, is applied. Validation of the performance of proposed algorithm is done through the modeling and simulating heavy loading of transmission lines, when the nonlinearities are pronounced. Nonlinear NN model in the Feedback Linearization (FLNN) form gives better estimation than the autoregressive with an external input (ARX) form. The proposed identifier (FLNN with LM algorithm) is then tested on a 4−machine, 2−area power system in conjunction with the feedback linearization controller (FBLC) under varying operating conditions. This case study indicates that the developed closed loop strategy performs better than the linear NN with PSC. Extension of FLNN with FBLC structure in a multi-variable setup is also done. LM algorithm is successfully employed with the multi-input multi-output FLNN structure in a sliding window batch mode, and FBLC controller generates multiple control signals for FACTS. Case studies on a large scale 16−machine, 5−area power system are reported for different power flow scenarios, to prove the superiority of proposed schemes: both MIMO and MISO against a conventional model based controller. A coefficient vector for FBLC is derived, and utilized online at each time instant, to enhance the damping performance of controller, transforming into a time varying controller

    Design and implementation of machine learning techniques for modeling and managing battery energy storage systems

    Get PDF
    The fast technological evolution and industrialization that have interested the humankind since the fifties has caused a progressive and exponential increase of CO2 emissions and Earth temperature. Therefore, the research community and the political authorities have recognized the need of a deep technological revolution in both the transportation and the energy distribution systems to hinder climate changes. Thus, pure and hybrid electric powertrains, smart grids, and microgrids are key technologies for achieving the expected goals. Nevertheless, the development of the above mentioned technologies require very effective and performing Battery Energy Storage Systems (BESSs), and even more effective Battery Management Systems (BMSs). Considering the above background, this Ph.D. thesis has focused on the development of an innovative and advanced BMS that involves the use of machine learning techniques for improving the BESS effectiveness and efficiency. Great attention has been paid to the State of Charge (SoC) estimation problem, aiming at investigating solutions for achieving more accurate and reliable estimations. To this aim, the main contribution has concerned the development of accurate and flexible models of electrochemical cells. Three main modeling requirements have been pursued for ensuring accurate SoC estimations: insight on the cell physics, nonlinear approximation capability, and flexible system identification procedures. Thus, the research activity has aimed at fulfilling these requirements by developing and investigating three different modeling approaches, namely black, white, and gray box techniques. Extreme Learning Machines, Radial Basis Function Neural Networks, and Wavelet Neural Networks were considered among the black box models, but none of them were able to achieve satisfactory SoC estimation performances. The white box Equivalent Circuit Models (ECMs) have achieved better results, proving the benefit that the insight on the cell physics provides to the SoC estimation task. Nevertheless, it has appeared clear that the linearity of ECMs has reduced their effectiveness in the SoC task. Thus, the gray box Neural Networks Ensemble (NNE) and the white box Equivalent Neural Networks Circuit (ENNC) models have been developed aiming at exploiting the neural networks theory in order to achieve accurate models, ensuring at the same time very flexible system identification procedures together with nonlinear approximation capabilities. The performances of NNE and ENNC have been compelling. In particular, the white box ENNC has reached the most effective performances, achieving accurate SoC estimations, together with a simple architecture and a flexible system identification procedure. The outcome of this thesis makes it possible the development of an interesting scenario in which a suitable cloud framework provides remote assistance to several BMSs in order to adapt the managing algorithms to the aging of BESSs, even considering different and distinct applications

    Interval and Fuzzy Computing in Neural Network for System Identification Problems

    Get PDF
    Increase of population and growing of societal and commercial activities with limited land available in a modern city leads to construction up of tall/high-rise buildings. As such, it is important to investigate about the health of the structure after the occurrence of manmade or natural disasters such as earthquakes etc. A direct mathematical expression for parametric study or system identification of these structures is not always possible. Actually System Identification (SI) problems are inverse vibration problems consisting of coupled linear or non-linear differential equations that depend upon the physics of the system. It is also not always possible to get the solutions for these problems by classical methods. Few researchers have used different methods to solve the above mentioned problems. But difficulties are faced very often while finding solution to these problems because inverse problem generally gives non-unique parameter estimates. To overcome these difficulties alternate soft computing techniques such as Artificial Neural Networks (ANNs) are being used by various researchers to handle the above SI problems. It is worth mentioning that traditional neural network methods have inherent advantage because it can model the experimental data (input and output) where good mathematical model is not available. Moreover, inverse problems have been solved by other researchers for deterministic cases only. But while performing experiments it is always not possible to get the data exactly in crisp form. There may be some errors that are due to involvement of human or experiment. Accordingly, those data may actually be in uncertain form and corresponding methodologies need to be developed. It is an important issue about dealing with variables, parameters or data with uncertain value. There are three classes of uncertain models, which are probabilistic, fuzzy and interval. Recently, fuzzy theory and interval analysis are becoming powerful tools for many applications in recent decades. It is known that interval and fuzzy computations are themselves very complex to handle. Having these in mind one has to develop efficient computational models and algorithms very carefully to handle these uncertain problems. As said above, in general we may not obtain the corresponding input and output values (experimental) exactly or in crisp form but we may have only uncertain information of the data. Hence, investigations are needed to handle the SI problems where data is available in uncertain form. Identification methods with crisp (exact) data are known and traditional neural network methods have already been used by various researchers. But when the data are in uncertain form then traditional ANN may not be applied. Accordingly, new ANN models need to be developed which may solve the targeted uncertain SI problems. Hence present investigation targets to develop powerful methods of neural network based on interval and fuzzy theory for the analysis and simulation with respect to the uncertain system identification problems. In this thesis, these uncertain data are assumed as interval and fuzzy numbers. Accordingly, identification methodologies are developed for multistorey shear buildings by proposing new models of Interval Neural Network (INN) and Fuzzy Neural Network (FNN) models which can handle interval and fuzzified data respectively. It may however be noted that the developed methodology not only be important for the mentioned problems but those may very well be used in other application problems too. Few SI problems have been solved in the present thesis using INN and FNN model which are briefly described below. From initial design parameters (namely stiffness and mass in terms of interval and fuzzy) corresponding design frequencies may be obtained for a given structural problem viz. for a multistorey shear structure. The uncertain (interval/fuzzy) frequencies may then be used to estimate the present structural parameter values by the proposed INN and FNN. Next, the identification has been done using vibration response of the structure subject to ambient vibration with interval/fuzzy initial conditions. Forced vibration with horizontal displacement in interval/fuzzified form has also been used to investigate the identification problem. Moreover this study involves SI problems of structures (viz. shear buildings) with respect to earthquake data in order to know the health of a structure. It is well known that earthquake data are both positive and negative. The Interval Neural Network and Fuzzy Neural Network model may not handle the data with negative sign due to the complexity in interval and fuzzy computation. As regards, a novel transformation method have been developed to compute response of a structural system by training the model for Indian earthquakes at Chamoli and Uttarkashi using uncertain (interval/fuzzified) ground motion data. The simulation may give an idea about the safety of the structural system in case of future earthquakes. Further a single layer interval and fuzzy neural network based strategy has been proposed for simultaneous identification of the mass, stiffness and damping of uncertain multi-storey shear buildings using series/cluster of neural networks. It is known that training in MNN and also in INN and FNN are time consuming because these models depend upon the number of nodes in the hidden layer and convergence of the weights during training. As such, single layer Functional Link Neural Network (FLNN) with multi-input and multi-output model has also been proposed to solve the system identification problems for the first time. It is worth mentioning that, single input single output FLNN had been proposed by previous authors. In FLNN, the hidden layer is replaced by a functional expansion block for enhancement of the input patterns using orthogonal polynomials such as Chebyshev, Legendre and Hermite, etc. The computations become more efficient than the traditional or classical multi-layer neural network due to the absence of hidden layer. FLNN has also been used for structural response prediction of multistorey shear buildings subject to earthquake ground motion. It is seen that FLNN can very well predict the structural response of different floors of multi-storey shear building subject to earthquake data. Comparison of results among Multi layer Neural Network (MNN), Chebyshev Neural Network (ChNN), Legendre Neural Network (LeNN), Hermite Neural Network (HNN) and desired are considered and it is found that Functional Link Neural Network models are more effective and takes less computation time than MNN. In order to show the reliability, efficacy and powerfulness of INN, FNN and FLNN models variety of problems have been solved here. Finally FLNN is also extended to interval based FLNN which is again proposed for the first time to the best of our knowledge. This model is implemented to estimate the uncertain stiffness parameters of a multi-storey shear building. The parameters are identified here using uncertain response of the structure subject to ambient and forced vibration with interval initial condition and horizontal displacement also in interval form

    Classification Techniques Using EHG Signals for Detecting Preterm Births

    Get PDF
    Premature birth is defined as an infant born before 37 weeks of gestation and can be sub-categorized into three phrases; late preterm delivery between 34 and 36 weeks of gestation; moderately preterm between 32 and 34 weeks, and extreme preterm less than 28 weeks of gestation. Globally, the rate of preterm births is increasing, thus resulting in significant health, development and economic problems. The current methods for the detection of preterm birth are inadequate due to the fact that the exact cause of premature uterine contractions leading to delivery is mostly unknown. Another problem is the interpretation of temporal and spectral characteristics of Electromyography (EMG), which is an electrodiagnostic medicine technique for recording and evaluating the electrical activity produced by uterine muscles during pregnancy and parturition – significant variability exists among obstetric care practitioners. Apart from a small number of potential causes for preterm birth, such as medication, uterine over-distension, preterm premature rupture of membranes (PPROM), intrauterine inflammation, precocious foetal endocrine activation, surgery, ethnicity and lifestyle, there is still a large amount of uncertainty about their specific risks. Hence, it is currently very difficult to make reliable predictions about preterm delivery risk. There has also been some evidence that the analysis of uterine electrical signals, collected from the abdominal surface, could provide an independent and easier way to diagnose true labour and detect the onset of preterm delivery. Early detection opens up new avenues for the development of an automated ambulatory system, based on uterine EMG, for patient monitoring during pregnancy. This can be made possible through the use of machine learning. The essence of machine learning is the utilisation of previously recorded data outcomes to train algorithms to ii stimulate software learning elements. Such learned models can, as a result, be used to detect and predict the early signs associated with the onset of preterm birth. Therefore in this thesis, Electrohysterography signals are used to classify uterine activity associated with preterm birth. This is achieved using an open dataset, which contains 262 records for women who delivered at term and 38 who delivered prematurely. Several new features from Electromyography studies are utilized, as well as feature-ranking techniques to determine their discriminative capabilities in detecting term and preterm records. The results illustrate that the combination of the Levenberg-Marquardt trained Feed-Forward Neural Network, Radial Basis Function Neural Network and the Random Neural Network classifiers performed the best, with 91% for sensitivity, 84% for specificity, 94% for the area under the curve and 12% for the mean error rate. Applying advanced machine learning algorithms, in conjunction with innovative signal processing techniques and the analysis of Electrohysterography signals shows significant benefits for use in clinical interventions for preterm birth assessments

    DYNAMIC SELF-ORGANISED NEURAL NETWORK INSPIRED BY THE IMMUNE ALGORITHM FOR FINANCIAL TIME SERIES PREDICTION AND MEDICAL DATA CLASSIFICATION

    Get PDF
    Artificial neural networks have been proposed as useful tools in time series analysis in a variety of applications. They are capable of providing good solutions for a variety of problems, including classification and prediction. However, for time series analysis, it must be taken into account that the variables of data are related to the time dimension and are highly correlated. The main aim of this research work is to investigate and develop efficient dynamic neural networks in order to deal with data analysis issues. This research work proposes a novel dynamic self-organised multilayer neural network based on the immune algorithm for financial time series prediction and biomedical signal classification, combining the properties of both recurrent and self-organised neural networks. The first case study that has been addressed in this thesis is prediction of financial time series. The financial time series signal is in the form of historical prices of different companies. The future prediction of price in financial time series enables businesses to make profits by predicting or simply guessing these prices based on some historical data. However, the financial time series signal exhibits a highly random behaviour, which is non-stationary and nonlinear in nature. Therefore, the prediction of this type of time series is very challenging. In this thesis, a number of experiments have been simulated to evaluate the ability of the designed recurrent neural network to forecast the future value of financial time series. The resulting forecast made by the proposed network shows substantial profits on financial historical signals when compared to the self-organised hidden layer inspired by immune algorithm and multilayer perceptron neural networks. These results suggest that the proposed dynamic neural networks has a better ability to capture the chaotic movement in financial signals. The second case that has been addressed in this thesis is for predicting preterm birth and diagnosing preterm labour. One of the most challenging tasks currently facing the healthcare community is the identification of preterm labour, which has important significances for both healthcare and the economy. Premature birth occurs when the baby is born before completion of the 37-week gestation period. Incomplete understanding of the physiology of the uterus and parturition means that premature labour prediction is a difficult task. The early prediction of preterm births could help to improve prevention, through appropriate medical and lifestyle interventions. One promising method is the use of Electrohysterography. This method records the uterine electrical activity during pregnancy. In this thesis, the proposed dynamic neural network has been used for classifying between term and preterm labour using uterine signals. The results indicated that the proposed network generated improved classification accuracy in comparison to the benchmarked neural network architectures

    The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: a critical review

    Get PDF
    With the predicted depletion of natural resources and alarming environmental issues, sustainable development has become a popular as well as a much-needed concept in modern process industries. Hence, manufacturers are quite keen on adopting novel process monitoring techniques to enhance product quality and process efficiency while minimizing possible adverse environmental impacts. Hardware sensors are employed in process industries to aid process monitoring and control, but they are associated with many limitations such as disturbances to the process flow, measurement delays, frequent need for maintenance, and high capital costs. As a result, soft sensors have become an attractive alternative for predicting quality-related parameters that are ‘hard-to-measure’ using hardware sensors. Due to their promising features over hardware counterparts, they have been employed across different process industries. This article attempts to explore the state-of-the-art artificial intelligence (Al)-driven soft sensors designed for process industries and their role in achieving the goal of sustainable development. First, a general introduction is given to soft sensors, their applications in different process industries, and their significance in achieving sustainable development goals. AI-based soft sensing algorithms are then introduced. Next, a discussion on how AI-driven soft sensors contribute toward different sustainable manufacturing strategies of process industries is provided. This is followed by a critical review of the most recent state-of-the-art AI-based soft sensors reported in the literature. Here, the use of powerful AI-based algorithms for addressing the limitations of traditional algorithms, that restrict the soft sensor performance is discussed. Finally, the challenges and limitations associated with the current soft sensor design, application, and maintenance aspects are discussed with possible future directions for designing more intelligent and smart soft sensing technologies to cater the future industrial needs

    GAIT PERFORMANCE AND CONTROL OF A PROSTHETIC ANKLE JOINT FOR BELOW-KNEE AMPUTEES

    Get PDF
    Traumatic events such as accidents or vascular and circulatory disorders often lead to amputation of the lower limb below the knee joint. The surgery is followed by fitting of a prosthetic device and rehabilitation process to help the individual recover mobility. The recovered gait of the individual depends to a large extent on his/her health, the amputation technique, and the functional level of the prosthesis. Prior research in amputee gait has focused mostly on assessing gait symmetry, movement of the healthy joints, activities of the unaffected muscles, and the metabolic energy consumption in individuals who had undergone traditional amputation. Very little research has been carried out on the performance of individuals with non-traditional amputation procedures designed to maximize the ability of the residual limb to support body weight at the extremity and to maintain the ability of the affected muscles. Moreover, majority of the studies were limited to gait tests in laboratory environments which restricted the mobility of the individuals. Current ankle/foot prostheses for people with below-knee amputation are primarily passive devices whose performance cannot be adapted or optimized to meet the requirements of different users. The adverse consequences of wearing poorly functioning prosthetic feet include asymmetric gait, increased metabolic consumption, limited blood flow, instability, and pain. Over the long term, the amputees, especially ones with diabetes, might have to undergo hip replacement procedure and use wheel-chair on a daily basis. There exists a high and increasing demand for an advanced prosthetic foot that is comfortable and able to replicate the function of the biological foot. Some of the factors hindering the development and performance validation of such an actively controlled foot are the lack of complete understanding of the gait, the interaction between the residual limb and the controller, presence of human in the control loop, unknown interaction between the terrain and the foot, and stringent requirements on the mechanical power and rigidity of the foot. This dissertation aims to address these shortcomings in a systematic fashion in order to develop an intelligent ankle/foot prosthesis system. The following are the key steps in the process adopted in this dissertation. • First, a gait monitoring device and algorithms for gait analysis will be developed to study the gait of people with below-knee amputation in real time during work-related activities. Experimental protocols are then designed to collect gait data from individuals with below-knee amputation in order to understand the activity of the residual muscles and the ability of the prosthetic device to support body weight during gait. • The dependence of the interfacial socket forces and electromyography signals from the muscles in the residual limb on the type of the gait and gait-related events will then be studied. The use of this dependence to recognize user gait and the corresponding ankle displacement pattern for the controlled prosthetic foot will be investigated. • Finally, hierarchical learning-based control strategies will be developed to adaptively compensate for the unknown, changing ankle dynamics and drive the prosthetic ankle joint along the desired trajectories. It is anticipated that the learning capabilities of these control strategies will enable the prosthetic ankle joint to not only replicate the movement of the healthy ankle, but also improve the stability of the gait and optimize the performance. The above approaches are demonstrated in this dissertation in two parts. The analysis of the gait of a group of otherwise healthy men with non-traditional amputation technique called transtibial osteomyoplastic amputation (TOA) is considered in the first part of the dissertation. The TOA procedure is prescribed for healthy, young individuals who desire a very active lifestyle. TOA offers stable bony residuum capable of bearing the weight of the individual and residual muscles that are active throughout the gait cycle. The gait study carried out in this dissertation is shown to confirm loading at the distal end-bearing area of the residual limb and active contraction of the residual muscles below the knee during gait of all participants. The interfacial forces in the socket and the activity of the residual muscles in subjects with TOA are shown to be related to and dependent on the type of gait, as well as the type of prosthetic feet used. In addition, the potential of residuum socket interface forces in recognition of the gait is also demonstrated. Learning-based control of the prosthetic ankle joint is addressed in the second part of the dissertation. Two hierarchical learning-based control algorithms that take into account the ankle dynamics, foot-ground interaction, and the movement of upper body are considered. The first strategy uses an artificial neural network-based feedback linearization controller to learn the unknown and changing dynamics of the ankle joint and to track a desired ankle displacement profile. In the second strategy, a neural dynamic programming-based controller that can track an ankle displacement profile while optimizing a cost function based on the tracking error is considered. Actual gait data obtained from the subjects in the first part of this dissertation is used to study the effectiveness of the control strategy. For the first time, an adaptive controller has been demonstrated that can address changes in terrain and in user requirements to provide consistent and stable functioning of the prosthetic ankle. It is anticipated that the strategy developed in this dissertation will help build an intelligent prosthetic foot that can significantly improve the mobility and long-term health of people with amputation of the lower limb. Keyword: Gait Analysis, Prosthetic Foot, Intelligent Contro

    ARTIFACT CHARACTERIZATION, DETECTION AND REMOVAL FROM NEURAL SIGNALS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore