166 research outputs found

    Variational Integrators for Reduced Magnetohydrodynamics

    Full text link
    Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws are described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.Comment: 35 page

    Lagrangian ADER-WENO Finite Volume Schemes on Unstructured Triangular Meshes Based On Genuinely Multidimensional HLL Riemann Solvers

    Full text link
    In this paper we use the genuinely multidimensional HLL Riemann solvers recently developed by Balsara et al. to construct a new class of computationally efficient high order Lagrangian ADER-WENO one-step ALE finite volume schemes on unstructured triangular meshes. A nonlinear WENO reconstruction operator allows the algorithm to achieve high order of accuracy in space, while high order of accuracy in time is obtained by the use of an ADER time-stepping technique based on a local space-time Galerkin predictor. The multidimensional HLL and HLLC Riemann solvers operate at each vertex of the grid, considering the entire Voronoi neighborhood of each node and allows for larger time steps than conventional one-dimensional Riemann solvers. The results produced by the multidimensional Riemann solver are then used twice in our one-step ALE algorithm: first, as a node solver that assigns a unique velocity vector to each vertex, in order to preserve the continuity of the computational mesh; second, as a building block for genuinely multidimensional numerical flux evaluation that allows the scheme to run with larger time steps compared to conventional finite volume schemes that use classical one-dimensional Riemann solvers in normal direction. A rezoning step may be necessary in order to overcome element overlapping or crossing-over. We apply the method presented in this article to two systems of hyperbolic conservation laws, namely the Euler equations of compressible gas dynamics and the equations of ideal classical magneto-hydrodynamics (MHD). Convergence studies up to fourth order of accuracy in space and time have been carried out. Several numerical test problems have been solved to validate the new approach

    An Hp-Adaptive Finite Element Procedure For Fluid-Structure Interaction In Fully Eulerian Framework

    Get PDF
    This thesis attempts to implement a fully automatic hp-adaptive finite element procedure for fluid-structure interaction (FSI) problems in two dimensions. This work hypotesizes the efficacy of Fully Eulerian framework of FSI in hp-adaptivity on an a posteriori error estimator and adaptation for minimization of error in energy norm. Automatic mesh adaptation over triangular elements is handled by red-green-blue (RGB) refinement method. An effective mesh adaptivity to avoid excessive growth of unknowns is also addressed. Since the hp-method uses high order polynomials as approximation functions, the resulting system matrices are less sparse leading to the notion of FSI computation with parallelism. The parallel hp-adaptive computation is assessed with the conventional uniform and h refinement on a number of benchmark test cases. Subsequently, the efficacy of the fully Eulerian framework is compared to the well known Arbitrary Lagrangian Framework( ALE) for two different material models, namely, the St. Venant Kirchoff and the Neo-Hookean models. It was found that the fully Eulerian framework provides accurate FSI predictions for large deformation without need of frequent remeshing. The hp-adaptive method was also found to be a viable approach in obtaining accurate solutions without much compromise in computer memory and time. Furthermore, the integration of parallelism is successful in reducing the computation time by up to two orders of magnitude relative to the serial solver. For the comparisons between the ALE and the fully Eulerian frameworks, the computed solutions in all test cases are observed to be in agreement with each other

    Fluxon Modeling of Low-Beta Plasmas

    Get PDF
    We have developed a new, quasi-Lagrangian approach for numerical modeling of magnetohydrodynamics in low to moderate β\beta plasmas such as the solar corona. We introduce the concept of a ``fluxon'', a discretized field line. Fluxon models represent the magnetic field as a skeleton of such discrete field lines, and interpolate field values from the geometry of the skeleton where needed, reversing the usual direction of the field line transform. The fluxon skeleton forms the grid for a collection of 1-D Eulerian models of plasma along individual flux tubes. Fluxon models have no numerical resistivity, because they preserve topology explicitly. Our prototype code, \emph{FLUX}, is currently able to find 3-D nonlinear force-free field solutions with a specified field topology, and work is ongoing to validate and extend the code to full magnetohydrodynamics. FLUX has significant scaling advantages over conventional models: for ``magnetic carpet'' models, with photospheric line-tied boundary conditions, FLUX simulations scale in complexity like a conventional 2-D grid although the full 3-D field is represented. The code is free software and is available online. In this current paper we introduce fluxons and our prototype code, and describe the course of future work with the code.Comment: 14 pages, 11 figures; also in press for JAST
    corecore