79 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Joint Optimization of Sensor Selection and Routing for Distributed Estimation in Wireless Sensor Networks

    Get PDF
    Avances recientes en redes inalámbricos de sensores (WSNs, Wireless Sensor Networks) han posibilitado que pequeños sensores, baratos y con recursos limitados tanto en sensado, comunicación, como en computación, sean desplegados a gran escala. En consecuencia, las WSNs pueden ofrecer diversos servicios en importantes aplicaciones para la sociedad. Entre las varias restricciones que aparecen en el diseño de WSNs, tales como la limitación en energía disponible, procesamiento y memoria, la limitación en energía es muy importante ya que en muchas aplicaciones (ej., monitorización remota de diferentes entornos, edificios administrativos, monitoreo del hábitat, los incendios forestales, la atención sanitaria, la vigilancia del tráfico, vigilancia del campo de batalla, las reservas de vida silvestre, etc.) los sensores están alimentados por baterías, pudiendo hacer uso también de captación de energía renovables. Dado que las comunicaciones son causantes del mayor consumo energético en un nodo, la transmisión y recepción de información deben optimizarse lo máximo posible. Estas limitaciones y el diseño específico de los sensores, hacen necesario el estudio de métodos eficientes energéticamente y que reduzcan la cantidad de información a transmitir. Motivación y Objetivos: Aunque las WSNs necesitan cubrir en muchas ocasiones una importante área geográfica, muchos eventos necesitan ser detectados y tratados localmente. Algunos de estos ejemplos son la energía capturada por sensores de energía acústica donde existe una cierta fuente acústica localizada en el espacio, detección y verificación de un foco de fuego en un bosque, sensores de dirección de llegada para localización, u otra fuente difusiva localmente generada (ej. radiación nuclear). Intuitivamente, en estos escenarios, los nodos que están localizados lejos de la fuente observarán medidas significativamente menos informativas que los nodos cercanos a la fuente. Por lo tanto, la vida útil de la red puede ser incrementada al considerar la activación de solo un subconjunto de sensores (los más informativos) cuya información es útil y por tanto debe ser recolectada. Además, la eficiencia energética puede ser mejorada aún más al elegir la mejor estructura de enrutamiento. Es importante resaltar que la técnica utilizada más tradicional es la transmisión directa inalámbrica de las medidas desde todos los nodos seleccionados al centro de fusión de datos (nodo solicitante de la estimación global), lo cual resultas en un ineficiente uso de los recursos energéticos. Una solución factible puede ser el uso de la naturaleza multisalto de la transmisión de datos, el cual puede significativamente reducir la potencia total de transmisión, y por tanto aumentar la vida de la red. La cuantificación de la información (fusión) puede también utilizarse en un procesado intra-red para ahorrar energía, ya que reduce la cantidad de información a ser reenviada en dirección al nodo centro de fusión. La asignación dinámica de bit-rate (bits por muestra) en cada nodo puede también ser empleada para reducir también el consumo total de la red. De esta manera, se puede obtener un importante ahorro energético al realizar de manera distribuida una cierta tarea de estimación optimizando el conjunto de sensores activo; la estructura de enrutamiento, y los bits por muestra para cada sensor seleccionado. En la literatura reciente, se ha demostrado claramente que la transmisión multisalto en WSNs es más eficiente energéticamente que la transmisión directa, donde cada medida es directamente transmitida al centro de fusión de datos (MT, Measure-and-Transmit). Además, transmisión mutlisalto, en general, permite el envío de las medidas al nodo fusión de dos formas: a) cada nodo reenviar directamente la información recibida, b) cada nodo reenviar la información agregada. Puede observarse que, el fusionar las medidas en sensores intermedios ofrece una mejora en la calidad global de la estimación con coste computacional limitado. Esto nos lleva a considerar los dos esquemas siguientes: Medir-y-reenviar (MF, Measure-and-Forward): En este esquema, los nodos sensores simplemente reenvían las medidas que reciben de sus nodos sensores hijos en dirección al nodo solicitante a lo largo de la estructura de enrutamiento elegida. El nodo solicitante obtendrá por tanto la estimación final, por lo tanto, no hay estimación agregadas incrementales en los sensores intermedios. Estimar-y-reenviar (EF, Estimate-and-Forward): En este esquema, se considera un enfoque con estimación agregada secuencial en los nodos intermedios de la ruta de encaminamiento. Dada una estructura de enrutamiento, cada sensor fusiona todas las otras medidas que son recibidas de sus nodos hijos junto con la suya propia, con el objetivo de obtener una estimación agregada, y luego enviar un único flujo de la información fusionada a su nodo sensor padre en la estructura de enrutamiento elegida. El esquema EF tiene varias ventajas interesantes respecto al esquema MF. En primer lugar, el esquema EF es más eficiente energéticamente ya que un nodo sensor activo en una ruta solo tiene que reenviar la estimación fusionada (una único paquete de información transmitir), en vez de reenviar su propia medida además de las medidas de sus nodos hijos. Además, utilizando un esquema EF, los nodos intermedios en la ruta tienen una estimación del parámetro que es mejor conforme el nodo está más cercano al nodo solicitante. La otra principal desventaja del esquema MF es que los nodos cerca del nodo solicitante pueden sobrecargarse, lo crea un efecto de cuello de botella. Por lo tanto, dada una WSN con una cierto grafo subyacente de conectividad de red, un cierto nodo solicitante, y una fuente localizada, esta tesis considera el problema de la estimación distribuida de un parámetro, donde la potencia total disponible esta limitada, por lo tanto, y donde utilizamos el esquema EF, optimizando conjuntamente el subconjunto de sensores activos, la asignación de bit-rate en cada sensor y la estructura de enrutamiento multisalto asociada hasta el nodo solicitante. Por lo tanto, la distorsión total en la estimación es minimizada para una cierta potencia total de transmisión. Un resultado importante de este trabajo el consiste en que el algoritmo Shortes Path Tree (SPT) basado solo en coste de comunicación (SPT-CC) no es la estructura óptima de enrutamiento en general cuando se busca alcanzar un compromiso óptimo entre la distorsión de la estimación y el coste total de comunicaciones, sin importar si uno usa el esquema MF o el EF. En nuestra estimación distribuida multisalto, mientras nos dirigimos hacia el nodo solicitante, necesitamos asignar tasas mayores de bits ya que la precisión de la estimación mejora a medida que más información se fusiona en los nodos de sensores intermedios. Por lo tanto, la asignación de tasa de bits en un sensor depende del número de saltos que existe entre dicho nodo y el nodo solicitante, de tal manera que hay una necesidad de proporcionar mayores tasas de bits al ir acercándose al nodo solicitante en la ruta de multisalto escogido. Por otro parte, la localización de la fuente que determine fenómeno estimar también influencia la asignación de bit-rate para sensor. Por ejemplo, si un sensor está cerca de la fuente (relación Señal-Ruido alto), incluso aunque existe un gran número de saltos necesarios para llegar al nodo solicitante, necesitamos asignar un bit-rate razonablemente alto. En consecuencia, hay una clara necesidad de diseñar un cuantificador adaptativo en cada sensor con el objetivo de proporcionar un apropiado bit-rate, el cual depende del compromiso entre el número de saltos y la localización de la fuente. Además, el bit-rate también depende del coste de comunicación entre cada dos sensores. Metodología: En esta tesis, combinamos métodos de análisis teórico, diseño algoritmos iterativos inspirados en herramientas de optimización así como simulaciones por ordenador. En el caso del análisis teórico del problema mencionado anteriormente, hemos seguido la metodología estándar de estimación óptima lineal no sesgada; en otras palabras, Best Linear Unbiased Estimator (BLUE). En particular, este trabajo de tesis se centra en el problema de optimizar conjuntamente la selección de sensores, la estructura de enrutamiento y la asignación de bit-rate para cada sensor seleccionado. En primer lugar, consideramos solamente la optimización conjunta de la selección de sensores y la estructura de enrutamiento, donde se asume una cuantificación fina, y por tanto se ignora la asignación óptima de bit-rate. En este caso, la función objetivo es lineal y las restricciones en el problema de optimización son no convexas, lo cual lleva a un problema a resolver que tiene una complejidad y alto. En segundo lugar, tenemos en cuenta la asignación del bit-rate como una variable adicional en el primer problema, convirtiéndose en un problema de optimización no lineal no convexo. Por lo tanto, el problema de optimización conjunta se hace aún más difícil de resolver que el primera problema de optimización. La solución de este problema no convexo se aborda utilizando varios pasos de relajación convexa y resolviendo estos problemas relajados para las diferentes variables en tándem. El objetivo en ambos problemas anteriormente mencionadas es reducir al mínimo la distorsión total en la estimación bajo una cierta limitación de potencia total dada. También demostramos que nuestros problemas pertenecen a la clase de problemas NP-hard, realizando una reducción (de complejidad polinomial) de nuestro problema el problema Hamiltoniano no dirigido (UHP, Undirected Hamiltonian Path). Nuestros problemas de optimización relajados se pueden resolver a través de métodos de optimización convexa, tales como los métodos de punto interior. Después de los análisis teóricos, los algoritmos propuestos considerados para ambos casos (cuantificación fina y cuantificación adaptativa), son simulados usando programación Matlab y el toolbox de CVX. Los algoritmos propuestos son comparados, en cada caso, con los mejores algoritmos propuestos en la literatura para la asignación de recursos en WSN para estimación. %Aunque las simulaciones fueron realizadas con el lenguaje de programación de Matlab, es posible usar otras plataformas de simulación y lenguajes de programación. Conclusiones: En esta tesis, dada una WSN con un grafo subyacente de conectividad de red, un cierto nodo solicitante (sumidero) y una fuente localizada, hemos considerado el problema de la estimación distribuida de parámetros con donde la potencia total disponible esta limitada. Por lo tanto, para llevar a cabo un cierta tarea de estimación distribuida (por ejemplo, detección de fuego en un bosque, localización basada en dirección de llegada, estimación de cualquier otro fenómeno localizado, etc.), hemos considerado el problema, usando el esquema EF, de optimizar conjuntamente el subconjunto de sensores activas, la asignación de bit-rate y la asociada estructura de enrutamiento multisalto para enviar la información agregada hasta el nodo solicitante. De esta manera, la distorsión en la estimación total es minimizada una cierta potencia total. La mayoría de las soluciones recientemente propuestas, intentan simplificar el problema considerando solamente la selección de un subconjunto de sensores, ignorando la optimización conjunta de la estructura de enrutamiento así como de la codificación. Sin embargo, optimizar la estructura de enrutamiento es una importante variable en el problema ya que, en general, transmitir información que está lejos del nodo solicitante es más costoso que desde un nodo cercano. La cuantificación de fuente también juega un papel importante ya que los sensores lejos de la fuente requieren menos niveles de cuantificación ya que reciben un SNR menor. A continuación resumimos nuestras principales contribuciones: 1. El problema de optimización conjunta de la selección de sensores, la estructura de enrutamiento multisalto y la asignación adaptativa de la tasa de bit (mediciones del sensor) para la estimación distribuida con un restricción en el coste total de comunicaciones, es formulado y analizado, tanto en términos de diseño de algoritmos como de análisis de complejidad, demostrando que es un problema NP-hard cuando se utiliza el esquema EF. También proporcionamos una cota inferior para la solución óptima del problema de optimización NP-hard original. 2. En primer lugar, consideramos el problema de optimización conjunta de la selección de los sensores y de la estructura de enrutamiento multisalto asumiendo que se dispone de una cuantificación fina para cada medición de los sensores. A continuación, presentamos un Algoritmo que llamamos FTRA (Fixed-Tree Relaxation-based Algorithm) que consiste en una relajación de nuestro problema de optimización original, y que desacopla la elección de la estructura de enrutamiento de la selección de sensores activos. 3. A continuación, también diseñamos un nuevo y eficiente algoritmo iterativo distribuido que llamamos IDA (Iterative Distributed Algorithm), que optimiza de forma conjunta a nivel local y distribuida la selección de sensores y la estructura de enrutamiento de saltos múltiples. También demostramos experimentalmente que nuestro IDA genera una solución que está cerca de la solución óptima al problema NP-hard original, haciéndose uso de la cota anteriormente obtenida. 4. En segundo lugar, hemos considerado la asignación de tasa de bit como una variable adicional al anterior problema la optimización, en un problema de optimización no lineal y no convexo resultando en un problema todavía mas complejo de resolver, y por tanto NP-Hard también. 5. Para este segundo problema de optimización, hemos desarrollado dos algoritmos: a) Algoritmo de Cuantificación Adaptativa basado en árbol Fijo (FTR-AQ, Fixed-Tree Relaxation-based Adaptive Quantization), y b) Algoritmo de Cuantificación Adaptativa basado en Optimización Local (LO-AQ, Local Optimization-based Adaptive Quantization). LO-AQ proporciona una estimación más precisa para la misma potencia total dada, aunque esto implica una complejidad computacional adicional en cada nodo. 6. Por último, comparamos nuestros algoritmos con los otros mejores trabajos relacionados presentados previamente en la literatura, mostrando claramente un rendimiento superior en términos de distorsión en la estimación para la misma potencia total dada.In this PhD thesis, we consider the problem of power efficient distributed estimation of a deterministic parameter related to a localized phenomena in a Wireless Sensor Network (WSN), where due to the power constraints, we propose to jointly optimize (i) selection of a subset of active sensors, (ii) multihop routing structure and (iii) bit-rate allocation for all active sensor measurements. Thus, our goal is to obtain the best possible estimation performance at a given querying (sink) node, for a given total power budget in the WSN. Furthermore, because of the power constraints, each selected sensor fuses all other measurements that are received from its child sensors on the chosen multihop routing tree structure together with its own measurement to perform an aggregated parameter estimation, and then it sends only one flow of fused data to its parent sensor on the tree. We call this scheme as an Estimate-and-Forward (EF). The thesis is divided in two parts. In the first part, an optimization problem is formulated where fine quantization (high bit-rates) is assumed to be provided at all the sensor measurements, that is, ignoring the bit-rate optimization problem. Then, only the sensor selection and multihop routing structure are jointly optimized in order to minimize the total distortion in estimation (estimation error) under a constraint on the total multihop communication cost. The resulting problem is non-convex, and we show that, in fact, it is an NP-Hard problem. Thus, first we propose an algorithm based on a relaxation of our original optimization problem, where the choice of the sensor selection is decoupled from the choice of the multihop routing structure. In this case, the routing structure is taken from the Shortest Path Tree, that is, it's based only on the Communication Cost (SPT-CC). Furthermore, we also design an efficient iterative distributed algorithm that jointly optimizes the sensor selection and multihop routing structure. Then, we also provide a lower bound for the optimal solution of our original NP-Hard optimization problem and show experimentally that our iterative distributed algorithm generates a solution that is close to this lower bound, thus approaching optimality. Although there is no strict guarantee that the gap between this lower bound and the optimal solution of the main problem is always small, our numerical experiments support that this gap is actually very small in many cases. In the second part, the bit-rate allocation is also considered in the optimization problem along with the sensor selection and multihop routing structure. In this case, the problem becomes a nonlinear non-convex optimization problem. Note that in the first part, the objective function was linear, but the constraints were non-convex. Since the problem in the second part is a nonlinear non-convex optimization problem, very interestingly, we address this nonlinear non-convex optimization problem using several relaxation steps and then solving the relaxed convex version over different variables in tandem, resulting in a sequence of linear (convex) subproblems that can be solved efficiently. Then, we propose an algorithm using the EF scheme and an adaptive uniform dithered quantizer to solve this problem. First, by assuming a certain fixed routing structure and high bit-rates to each sensor measurement are available, we optimize the sensor selection. Then, given the subset of sensors and associated routing structure, we optimize the bit-rate allocation only for the selected sensors for a given total power budget, in order to minimize the total distortion in estimation. In addition, we also show that the total distortion in estimation can be further minimized by allowing interplay between the edges of the selected routing structure and other available smaller communication cost edges, while keeping the routing tree routed at the sink node. An important result from our work is that because of the interplay between the communication cost over the links and the gain in estimation accuracy obtained by choosing certain sensors and fusing their measurements on the routing tree, the traditional SPT routing structure, widely used in practice, is no longer optimal. To be more specific, our routing structures provide a better trade-off between the overall power consumption and the final estimation accuracy obtained at the sink node. Comparing to more conventional sensor selection, adaptive quantization and fixed routing algorithms, our proposed joint optimization algorithms yield a significant amount of energy saving for the same estimation accuracy

    A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    Get PDF
    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks

    Reconfigurable Intelligent Surfaces for Smart Cities: Research Challenges and Opportunities

    Get PDF
    The concept of Smart Cities has been introduced as a way to benefit from the digitization of various ecosystems at a city level. To support this concept, future communication networks need to be carefully designed with respect to the city infrastructure and utilization of resources. Recently, the idea of 'smart' environment, which takes advantage of the infrastructure for better performance of wireless networks, has been proposed. This idea is aligned with the recent advances in design of reconfigurable intelligent surfaces (RISs), which are planar structures with the capability to reflect impinging electromagnetic waves toward preferred directions. Thus, RISs are expected to provide the necessary flexibility for the design of the 'smart' communication environment, which can be optimally shaped to enable cost- and energy-efficient signal transmissions where needed. Upon deployment of RISs, the ecosystem of the Smart Cities would become even more controllable and adaptable, which would subsequently ease the implementation of future communication networks in urban areas and boost the interconnection among private households and public services. In this paper, we describe our vision of the application of RISs in future Smart Cities. In particular, the research challenges and opportunities are addressed. The contribution paves the road to a systematic design of RIS-assisted communication networks for Smart Cities in the years to come.Comment: Submitted for possible publication in IEEE Open Journal of the Communications Societ

    Optimization of routing-based clustering approaches in wireless sensor network: Review and open research issues

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. In today’s sensor network research, numerous technologies are used for the enhancement of earlier studies that focused on cost-effectiveness in addition to time-saving and novel approaches. This survey presents complete details about those earlier models and their research gaps. In general, clustering is focused on managing the energy factors in wireless sensor networks (WSNs). In this study, we primarily concentrated on multihop routing in a clustering environment. Our study was classified according to cluster-related parameters and properties and is subdivided into three approach categories: (1) parameter-based, (2) optimization-based, and (3) methodology-based. In the entire category, several techniques were identified, and the concept, parameters, advantages, and disadvantages are elaborated. Based on this attempt, we provide useful information to the audience to be used while they investigate their research ideas and to develop a novel model in order to overcome the drawbacks that are present in the WSN-based clustering models

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Progressively communicating rich telemetry from autonomous underwater vehicles via relays

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2012As analysis of imagery and environmental data plays a greater role in mission construction and execution, there is an increasing need for autonomous marine vehicles to transmit this data to the surface. Without access to the data acquired by a vehicle, surface operators cannot fully understand the state of the mission. Communicating imagery and high-resolution sensor readings to surface observers remains a significant challenge – as a result, current telemetry from free-roaming autonomous marine vehicles remains limited to ‘heartbeat’ status messages, with minimal scientific data available until after recovery. Increasing the challenge, longdistance communication may require relaying data across multiple acoustic hops between vehicles, yet fixed infrastructure is not always appropriate or possible. In this thesis I present an analysis of the unique considerations facing telemetry systems for free-roaming Autonomous Underwater Vehicles (AUVs) used in exploration. These considerations include high-cost vehicle nodes with persistent storage and significant computation capabilities, combined with human surface operators monitoring each node. I then propose mechanisms for interactive, progressive communication of data across multiple acoustic hops. These mechanisms include wavelet-based embedded coding methods, and a novel image compression scheme based on texture classification and synthesis. The specific characteristics of underwater communication channels, including high latency, intermittent communication, the lack of instantaneous end-to-end connectivity, and a broadcast medium, inform these proposals. Human feedback is incorporated by allowing operators to identify segments of data thatwarrant higher quality refinement, ensuring efficient use of limited throughput. I then analyze the performance of these mechanisms relative to current practices. Finally, I present CAPTURE, a telemetry architecture that builds on this analysis. CAPTURE draws on advances in compression and delay tolerant networking to enable progressive transmission of scientific data, including imagery, across multiple acoustic hops. In concert with a physical layer, CAPTURE provides an endto- end networking solution for communicating science data from autonomous marine vehicles. Automatically selected imagery, sonar, and time-series sensor data are progressively transmitted across multiple hops to surface operators. Human operators can request arbitrarily high-quality refinement of any resource, up to an error-free reconstruction. The components of this system are then demonstrated through three field trials in diverse environments on SeaBED, OceanServer and Bluefin AUVs, each in different software architectures.Thanks to the National Science Foundation, and the National Oceanic and Atmospheric Administration for their funding of my education and this work

    Compression et transmission d'images avec énergie minimale application aux capteurs sans fil

    Get PDF
    Un réseau de capteurs d'images sans fil (RCISF) est un réseau ad hoc formé d'un ensemble de noeuds autonomes dotés chacun d'une petite caméra, communiquant entre eux sans liaison filaire et sans l'utilisation d'une infrastructure établie, ni d'une gestion de réseau centralisée. Leur utilité semble majeure dans plusieurs domaines, notamment en médecine et en environnement. La conception d'une chaîne de compression et de transmission sans fil pour un RCISF pose de véritables défis. L'origine de ces derniers est liée principalement à la limitation des ressources des capteurs (batterie faible , capacité de traitement et mémoire limitées). L'objectif de cette thèse consiste à explorer des stratégies permettant d'améliorer l'efficacité énergétique des RCISF, notamment lors de la compression et de la transmission des images. Inéluctablement, l'application des normes usuelles telles que JPEG ou JPEG2000 est éner- givore, et limite ainsi la longévité des RCISF. Cela nécessite leur adaptation aux contraintes imposées par les RCISF. Pour cela, nous avons analysé en premier lieu, la faisabilité d'adapter JPEG au contexte où les ressources énergétiques sont très limitées. Les travaux menés sur cet aspect nous permettent de proposer trois solutions. La première solution est basée sur la propriété de compactage de l'énergie de la Transformée en Cosinus Discrète (TCD). Cette propriété permet d'éliminer la redondance dans une image sans trop altérer sa qualité, tout en gagnant en énergie. La réduction de l'énergie par l'utilisation des régions d'intérêts représente la deuxième solution explorée dans cette thèse. Finalement, nous avons proposé un schéma basé sur la compression et la transmission progressive, permettant ainsi d'avoir une idée générale sur l'image cible sans envoyer son contenu entier. En outre, pour une transmission non énergivore, nous avons opté pour la solution suivante. N'envoyer fiablement que les basses fréquences et les régions d'intérêt d'une image. Les hautes fréquences et les régions de moindre intérêt sont envoyées""infiablement"", car leur pertes n'altèrent que légèrement la qualité de l'image. Pour cela, des modèles de priorisation ont été comparés puis adaptés à nos besoins. En second lieu, nous avons étudié l'approche par ondelettes (wavelets ). Plus précisément, nous avons analysé plusieurs filtres d'ondelettes et déterminé les ondelettes les plus adéquates pour assurer une faible consommation en énergie, tout en gardant une bonne qualité de l'image reconstruite à la station de base. Pour estimer l'énergie consommée par un capteur durant chaque étape de la 'compression, un modèle mathématique est développé pour chaque transformée (TCD ou ondelette). Ces modèles, qui ne tiennent pas compte de la complexité de l'implémentation, sont basés sur le nombre d'opérations de base exécutées à chaque étape de la compression
    corecore