41 research outputs found

    Prévision du trafic Internet : modèles et applications

    Get PDF
    Avec l'essor de la métrologie de l'Internet, la prévision du trafic s'est imposée comme une de ses branches les plus importantes. C'est un outil puissant qui permet d'aider à la conception, la mise en place et la gestion des réseaux ainsi qu'à l'ingénierie du trafic et le contrôle des paramètres de qualité de service. L'objectif de cette thèse est d'étudier les techniques de prévision et d'évaluer la performance des modèles de prévision et de les appliquer pour la gestion des files d'attente et le contrôle du taux de perte dans les réseaux à commutation de rafales. Ainsi, on analyse les différents paramètres qui permettent d'améliorer la performance de la prévision en termes d'erreur. Les paramètres étudiés sont : la quantité de données nécessaires pour définir les paramètres du modèle, leur granularité, le nombre d'entrées du modèle ainsi que les caractéristiques du trafic telles que sa variance et la distribution de la taille des paquets. Nous proposons aussi une technique d'échantillonnage baptisée échantillonnage basé sur le maximum (Max-Based Sampling - MBS). Nous prouvons son efficacité pour améliorer la performance de la prévision et préserver l'auto-similarité et la dépendance à long terme du trafic. \ud Le travail porte aussi sur l'exploitation de la prévision du trafic pour la gestion du trafic et le contrôle du taux de perte dans les réseaux à commutation de rafales. Ainsi, nous proposons un nouveau mécanisme de gestion de files d'attente, baptisé α_SNFAQM, qui est basé sur la prévision du trafic. Ce mécanisme permet de stabiliser la taille de la file d'attente et par suite, contrôler les délais d'attente des paquets. Nous proposons aussi une nouvelle technique qui permet de garantir la qualité de service dans les réseaux à commutation de rafales en termes de taux de perte. Elle combine entre la modélisation, la prévision du trafic et les systèmes asservis avec feedback. Elle permet de contrôler efficacement le taux de perte des rafales pour chaque classe de service. Le modèle est ensuite amélioré afin d'éviter les feedbacks du réseau en utilisant la prévision du taux de perte au niveau TCP. \ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : Modélisation et prévision du trafic, techniques d'échantillonnage, gestion des files d'attente, réseaux à commutation de rafales, contrôle du taux de perte, qualité de service, l'automatique

    Software-defined Networking enabled Resource Management and Security Provisioning in 5G Heterogeneous Networks

    Get PDF
    Due to the explosive growth of mobile data traffic and the shortage of spectral resources, 5G networks are envisioned to have a densified heterogeneous network (HetNet) architecture, combining multiple radio access technologies (multi-RATs) into a single holistic network. The co-existing of multi-tier architectures bring new challenges, especially on resource management and security provisioning, due to the lack of common interface and consistent policy across HetNets. In this thesis, we aim to address the technical challenges of data traffic management, coordinated spectrum sharing and security provisioning in 5G HetNets through the introduction of a programmable management platform based on Software-defined networking (SDN). To address the spectrum shortage problem in cellular networks, cellular data traffic is efficiently offloaded to the Wi-Fi network, and the quality of service of user applications is guaranteed with the proposed delay tolerance based partial data offloading algorithm. A two-layered information collection is also applied to best load balancing decision-making. Numerical results show that the proposed schemes exploit an SDN controller\u27s global view of the HetNets and take optimized resource allocation decisions. To support growing vehicle-generated data traffic in 5G-vehicle ad hoc networks (VANET), SDN-enabled adaptive vehicle clustering algorithm is proposed based on the real-time road traffic condition collected from HetNet infrastructure. Traffic offloading is achieved within each cluster and dynamic beamformed transmission is also applied to improve trunk link communication quality. To further achieve a coordinated spectrum sharing across HetNets, an SDN enabled orchestrated spectrum sharing scheme that integrates participating HetNets into an amalgamated network through a common configuration interface and real-time information exchange is proposed. In order to effectively protect incumbent users, a real-time 3D interference map is developed to guide the spectrum access based on the SDN global view. MATLAB simulations confirm that average interference at incumbents is reduced as well as the average number of denied access. Moreover, to tackle the contradiction between more stringent latency requirement of 5G and the potential delay induced by frequent authentications in 5G small cells and HetNets, an SDN-enabled fast authentication scheme is proposed in this thesis to simplify authentication handover, through sharing of user-dependent secure context information (SCI) among related access points. The proposed SCI is a weighted combination of user-specific attributes, which provides unique fingerprint of the specific device without additional hardware and computation cost. Numerical results show that the proposed non-cryptographic authentication scheme achieves comparable security with traditional cryptographic algorithms, while reduces authentication complexity and latency especially when network load is high

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications

    Spatio-temporal forecasting of network data

    Get PDF
    In the digital age, data are collected in unprecedented volumes on a plethora of networks. These data provide opportunities to develop our understanding of network processes by allowing data to drive method, revealing new and often unexpected insights. To date, there has been extensive research into the structure and function of complex networks, but there is scope for improvement in modelling the spatio-temporal evolution of network processes in order to forecast future conditions. This thesis focusses on forecasting using data collected on road networks. Road traffic congestion is a serious and persistent problem in most major cities around the world, and it is the task of researchers and traffic engineers to make use of voluminous traffic data to help alleviate congestion. Recently, spatio-temporal models have been applied to traffic data, showing improvements over time series methods. Although progress has been made, challenges remain. Firstly, most existing methods perform well under typical conditions, but less well under atypical conditions. Secondly, existing spatio-temporal models have been applied to traffic data with high spatial resolution, and there has been little research into how to incorporate spatial information on spatially sparse sensor networks, where the dependency relationships between locations are uncertain. Thirdly, traffic data is characterised by high missing rates, and existing methods are generally poorly equipped to deal with this in a real time setting. In this thesis, a local online kernel ridge regression model is developed that addresses these three issues, with application to forecasting of travel times collected by automatic number plate recognition on London’s road network. The model parameters can vary spatially and temporally, allowing it to better model the time varying characteristics of traffic data, and to deal with abnormal traffic situations. Methods are defined for linking the spatially sparse sensor network to the physical road network, providing an improved representation of the spatial relationship between sensor locations. The incorporation of the spatio-temporal neighbourhood enables the model to forecast effectively under missing data. The proposed model outperforms a range of benchmark models at forecasting under normal conditions, and under various missing data scenarios

    Online learning on the programmable dataplane

    Get PDF
    This thesis makes the case for managing computer networks with datadriven methods automated statistical inference and control based on measurement data and runtime observations—and argues for their tight integration with programmable dataplane hardware to make management decisions faster and from more precise data. Optimisation, defence, and measurement of networked infrastructure are each challenging tasks in their own right, which are currently dominated by the use of hand-crafted heuristic methods. These become harder to reason about and deploy as networks scale in rates and number of forwarding elements, but their design requires expert knowledge and care around unexpected protocol interactions. This makes tailored, per-deployment or -workload solutions infeasible to develop. Recent advances in machine learning offer capable function approximation and closed-loop control which suit many of these tasks. New, programmable dataplane hardware enables more agility in the network— runtime reprogrammability, precise traffic measurement, and low latency on-path processing. The synthesis of these two developments allows complex decisions to be made on previously unusable state, and made quicker by offloading inference to the network. To justify this argument, I advance the state of the art in data-driven defence of networks, novel dataplane-friendly online reinforcement learning algorithms, and in-network data reduction to allow classification of switchscale data. Each requires co-design aware of the network, and of the failure modes of systems and carried traffic. To make online learning possible in the dataplane, I use fixed-point arithmetic and modify classical (non-neural) approaches to take advantage of the SmartNIC compute model and make use of rich device local state. I show that data-driven solutions still require great care to correctly design, but with the right domain expertise they can improve on pathological cases in DDoS defence, such as protecting legitimate UDP traffic. In-network aggregation to histograms is shown to enable accurate classification from fine temporal effects, and allows hosts to scale such classification to far larger flow counts and traffic volume. Moving reinforcement learning to the dataplane is shown to offer substantial benefits to stateaction latency and online learning throughput versus host machines; allowing policies to react faster to fine-grained network events. The dataplane environment is key in making reactive online learning feasible—to port further algorithms and learnt functions, I collate and analyse the strengths of current and future hardware designs, as well as individual algorithms

    Smart traffic control for the era of autonomous driving

    Get PDF
    This thesis aims to take on the challenges to address some of the key issues in traffic control and management, including intersection protocol design, congestion measurement, selfish routing and road infrastructure automation, under the assumption that all vehicles on the road are connected and self-driving. To design and test traffic control mechanisms for AVs, we introduced a formal model to represent road networks and traffic. Based on this model, we developed a simulation system on top of an existing open-source platform (AIM4) and used it to examine a number of traffic management protocols specifically designed for traffic with fully autonomous vehicles. Simulation outcomes show that traffic management protocols for AVs can be more subtle, sensitive and variable with traffic volumes/flow rate, vehicle safe distance and road configuration. In addition, by analyzing the real-world traffic data and simulation data, we found that measuring congestion with exponential functions has considerable advantages against the traditional BPR function in certain aspects. The deployment of autonomous vehicles provides traffic management with an opportunity of choosing either centralised control or decentralised control. The price of anarchy (PoA) of autonomous decision-making for routing gives an applicable quantitative criterion for selection between them. We extended the existing research on PoA with the ˙class of exponential functions as cost functions. We found an expression for the tight upper bound of the PoA for selfish routing games with exponential cost functions. Unlike existing studies, this upper bound depends on traffic demands, with which we can get a more accurate estimation of the PoA. Furthermore, by comparing the upper-bounds of PoA between the BPR function and the exponential function, we found that the exponential functions yield a smaller upper bound than the BPR functions in relatively low traffic flows. To specify traffic management systems with autonomous roadside facilities, we propose a hybrid model of traffic assignment. This model aims to describe traffic management systems in which both vehicles and roadside controllers make autonomous decisions, therefore, are autonomous agents. We formulated a non-linear optimization problem to optimize traffic control from a macroscopic view of the road network. To avoid the complex calculations required for non-linear optimization, we proposed an approximation algorithm to calculate equilibrium routing and traffic control strategies. The simulation results show that this algorithm eventually converges to a steady state. The traffic control scheme in this steady state is an approximately optimal solution

    Heterogeneity, High Performance Computing, Self-Organization and the Cloud

    Get PDF
    application; blueprints; self-management; self-organisation; resource management; supply chain; big data; PaaS; Saas; HPCaa
    corecore