131 research outputs found

    Modifying the Yamaguchi Four-Component Decomposition Scattering Powers Using a Stochastic Distance

    Full text link
    Model-based decompositions have gained considerable attention after the initial work of Freeman and Durden. This decomposition which assumes the target to be reflection symmetric was later relaxed in the Yamaguchi et al. decomposition with the addition of the helix parameter. Since then many decomposition have been proposed where either the scattering model was modified to fit the data or the coherency matrix representing the second order statistics of the full polarimetric data is rotated to fit the scattering model. In this paper we propose to modify the Yamaguchi four-component decomposition (Y4O) scattering powers using the concept of statistical information theory for matrices. In order to achieve this modification we propose a method to estimate the polarization orientation angle (OA) from full-polarimetric SAR images using the Hellinger distance. In this method, the OA is estimated by maximizing the Hellinger distance between the un-rotated and the rotated T33T_{33} and the T22T_{22} components of the coherency matrix [T]\mathbf{[T]}. Then, the powers of the Yamaguchi four-component model-based decomposition (Y4O) are modified using the maximum relative stochastic distance between the T33T_{33} and the T22T_{22} components of the coherency matrix at the estimated OA. The results show that the overall double-bounce powers over rotated urban areas have significantly improved with the reduction of volume powers. The percentage of pixels with negative powers have also decreased from the Y4O decomposition. The proposed method is both qualitatively and quantitatively compared with the results obtained from the Y4O and the Y4R decompositions for a Radarsat-2 C-band San-Francisco dataset and an UAVSAR L-band Hayward dataset.Comment: Accepted for publication in IEEE J-STARS (IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

    Application Of Polarimetric SAR For Surface Parameter Inversion And Land Cover Mapping Over Agricultural Areas

    Get PDF
    In this thesis, novel methodology is developed to extract surface parameters under vegetation cover and to map crop types, from the polarimetric Synthetic Aperture Radar (PolSAR) images over agricultural areas. The extracted surface parameters provide crucial information for monitoring crop growth, nutrient release efficiency, water capacity, and crop production. To estimate surface parameters, it is essential to remove the volume scattering caused by the crop canopy, which makes developing an efficient volume scattering model very critical. In this thesis, a simplified adaptive volume scattering model (SAVSM) is developed to describe the vegetation scattering as crop changes over time through considering the probability density function of the crop orientation. The SAVSM achieved the best performance in fields of wheat, soybean and corn at various growth stages being in convert with the crop phenological development compared with current models that are mostly suitable for forest canopy. To remove the volume scattering component, in this thesis, an adaptive two-component model-based decomposition (ATCD) was developed, in which the surface scattering is a X-Bragg scattering, whereas the volume scattering is the SAVSM. The volumetric soil moisture derived from the ATCD is more consistent with the verifiable ground conditions compared with other model-based decomposition methods with its RMSE improved significantly decreasing from 19 [vol.%] to 7 [vol.%]. However, the estimation by the ATCD is biased when the measured soil moisture is greater than 30 [vol.%]. To overcome this issue, in this thesis, an integrated surface parameter inversion scheme (ISPIS) is proposed, in which a calibrated Integral Equation Model together with the SAVSM is employed. The derived soil moisture and surface roughness are more consistent with verifiable observations with the overall RMSE of 6.12 [vol.%] and 0.48, respectively

    General model-based decomposition framework for polarimetric SAR images

    Get PDF
    2017 Spring.Includes bibliographical references.Polarimetric synthetic aperture radars emit a signal and measure the magnitude, phase, and polarization of the return. Polarimetric decompositions are used to extract physically meaningful attributes of the scatterers. Of these, model-based decompositions intend to model the measured data with canonical scatter-types. Many advances have been made to this field of model-based decomposition and this work is surveyed by the first portion of this dissertation. A general model-based decomposition framework (GMBDF) is established that can decompose polarimetric data with different scatter-types and evaluate how well those scatter-types model the data by comparing a residual term. The GMBDF solves for all the scatter-type parameters simultaneously that are within a given decomposition by minimizing the residual term. A decomposition with a lower residual term contains better scatter-type models for the given data. An example is worked through that compares two decompositions with different surface scatter-type models. As an application of the polarimetric decomposition analysis, a novel terrain classification algorithm of polSAR images is proposed. In the algorithm, the results of state-of-the-art polarimetric decompositions are processed for an image. Pixels are then selected to represent different terrain classes. Distributions of the parameters of these selected pixels are determined for each class. Each pixel in the image is given a score according to how well its parameters fit the parameter distributions of each class. Based on this score, the pixel is either assigned to a predefined terrain class or labeled unclassified

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Statistical comparison of SAR backscatter from icebergs embedded in sea ice and in open water using RADARSAT-2 images of in Newfoundland waters and the Davis Strait

    Get PDF
    Icebergs are considered a threat to marine operations. Satellite monitoring of icebergs is one option to aid in the development of iceberg hazard maps. Satellite synthetic aperture radar (SAR) is an obvious choice because of its relative weather independence, day and night operation. Nonetheless, the detection of icebergs in SAR can be a challenge, particularly with high iceberg areal density, heterogeneous background clutter and the presence of sea ice. This thesis investigates and compares polarimetric signatures of icebergs embedded in sea ice and icebergs in open water. In this thesis, RADARSAT-2 images have been used for analysis, which was acquired over locations near the coastline (approximately 3-35 km) of the islands of Newfoundland and Greenland. All icebergs considered here are in the lower incident angle range (below 30 degrees) of the SAR acquisition geometry. For analysis, polarimetry parameters such as co- (HH) and cross- (HV) polarization and several decomposition techniques, specifically Pauli, Freeman-Durden, Yamaguchi, Cloud-Pottier and van Zyl classification, have been used to determine the polarimetric signatures of icebergs and sea ice. Statistical hypothesis tests were used to determine the differences among backscatters from different icebergs. Statistical results tend to show a dominant surface scattering mechanism for icebergs. Moreover, icebergs in open water produce larger volume scatter than icebergs in sea ice, while icebergs in sea ice produce larger surface scatter than icebergs in open water. In addition, there appear to be minor observable differences between icebergs in Greenland and icebergs in Newfoundland

    Quad polarimetric synthetic aperture radar analysis of icebergs in Greenland and Svalbard

    Get PDF
    Polarimetric synthetic aperture radar (PolSAR) has been widely used in ocean and cryospheric applications. This is because, PolSAR can be used in all-day operations and in areas of cloud cover, and therefore can provide valuable large-scale monitoring in polar regions, which is very helpful to shipping and offshore maritime operations. In the last decades, attention has turned to the potential of PolSAR to detect icebergs in the Arctic since they are a major hazard to vessels. However, there is a substantial lack of literature exploring the potentialities of PolSAR and the understanding of iceberg scattering mechanisms. Additionally, it is not known if high resolution PolSAR can be used to detect icebergs smaller than 120 metres. This thesis aims to improve the knowledge of the use of PolSAR scattering mechanisms of icebergs, and detection of small icebergs. First, an introduction to PolSAR is outlined in chapter two, and monitoring of icebergs is presented in chapter three. The first data chapter (Chapter 4) is focused on developing a multi-scale analysis of icebergs using parameters from the Cloude-Pottier and the Yamaguchi decompositions, the polarimetric span and the Pauli scattering vector. This method is carried out using ALOS-2 PALSAR quad polarimetric L-band SAR on icebergs in Greenland. This approach outlines the good potential for using PolSAR for future iceberg classification. One of the main important outcomes is that icebergs are composed by a combination of single targets, which therefore may require a more complex way of processing SAR data to properly extract physical information. In chapter five, the problem of detecting icebergs is addressed by introducing six state-of-the-art detectors previously applied to vessel monitoring. These detectors are the Dual Intensity Polarisation Ratio Anomaly Detector (iDPolRAD), Polarimetric Notch Filter (PNF), Polarimetric Matched Filter (PMF), reflection symmetry (sym), Optimal Polarimetric Detector (OPD) and the Polarimetric Whitening Filter (PWF). Cloude-Pottier entropy, and first and third eigenvalues (eig1 and eig3) of the coherency matrix are also utilised as parameters for comparison. This approach uses the same ALOS-2 dataset, but also evaluates detection performance in two scenarios: icebergs in open ocean, and in sea ice. Polarimetric modes (quad-pol, dual-pol, and single intensities) are also considered for comparison. Currently it is very difficult to detect icebergs less than 120 metres in length using this approach, due to the scattering mechanisms of icebergs and sea ice being very similar. However, it was possible to obtain detection performances of the OPD and PWF, which both showed a Probability of Detection (PF) of 0.99 when the Probability of False Alarms (PF) was set to 10-5 in open ocean. Similarly, in dual pol images, the PWF gave the best performance with a PD of 0.90. Results in sea ice found eig3 to be the best detector with a PD of 0.90 while in dual-pol mode, iDPolRAD gave a PD of 0.978. Single intensity detector performance found the HV channel gave the best detection with a PD of 0.99 in open ocean and 0.87 in sea ice. In the previous two approaches, only satellite data is used. However, in chapter six, data from a ground-based Ku-band Gamma Portable Radio Interferometer (GPRI) instrument is introduced, providing images that are synchronised with the satellite acquisitions. In this approach, the same six detectors are applied to three multitemporal RADARSAT-2 quad pol C-band SAR images on icebergs in Kongsfjorden, Svalbard to evaluate the detection performance within a changing fjord environment. As before, we also make use of Cloude-Pottier entropy, eig1 and eig3. Finally, we evaluate the target-to-clutter ratio (TCR) of the icebergs and check for correlation between the backscattering coefficients and the iceberg dimension. The results obtained from this thesis present original additions to the literature that contributes to the understanding of PolSAR in cryospheric applications. Although these methods are applied to PolSAR and ground-based radar on vessels, they have been applied for the first time on icebergs in this thesis. To summarise, the main findings are that icebergs cannot be represented as single or partial targets, but they do exhibit a collection of single targets clustered together. This result leads to the fact that entropy is not sufficient as a parameter to detect icebergs. Detection results show that the OPD and PWF detectors perform best in an open ocean setting and using quad-pol mode. These results are degraded in dual-pol mode, while single intensity detection is best in the HV cross polarisation channel. When these detectors are applied to the RADARSAT-2 in Svalbard, the OPD and PWF detectors also perform best with PD values ranging between 0.5-0.75 for a PF of 0.01-0.05. However, the sea ice present in the fjord degrades performance across all detectors. Correlation plots with iceberg size show that a regression is not straightforward and Computer Vision methodologies may work best for this

    Land cover and forest mapping in boreal zone using polarimetric and interferometric SAR data

    Get PDF
    Remote sensing offers a wide range of instruments suitable to meet the growing need for consistent, timely and cost-effective monitoring of land cover and forested areas. One of the most important instruments is synthetic aperture radar (SAR) technology, where transfer of advanced SAR imaging techniques from mostly experimental small test-area studies to satellites enables improvements in remote assessment of land cover on a global scale. Globally, forests are very suitable for remote sensing applications due to their large dimensions and relatively poor accessibility in distant areas. In this thesis, several methods were developed utilizing Earth observation data collected using such advanced SAR techniques, as well as their application potential was assessed. The focus was on use of SAR polarimetry and SAR interferometry to improve performance and robustness in assessment of land cover and forest properties in the boreal zone. Particular advances were achieved in land cover classification and estimating several key forest variables, such as forest stem volume and forest tree height. Important results reported in this thesis include: improved polarimetric SAR model-based decomposition approach suitable for use in boreal forest at L-band; development and demonstration of normalization method for fully polarimetric SAR mosaics, resulting in improved classification performance and suitable for wide-area mapping purposes; establishing new inversion procedure for robust forest stem volume retrieval from SAR data; developing semi-empirical method and demonstrating potential for soil type separation (mineral soil, peatland) under forested areas with L-band polarimetric SAR; developing and demonstrating methodology for simultaneous retrieval of forest tree height and radiowave attenuation in forest layer from inter-ferometric SAR data, resulting in improved accuracy and more stable estimation of forest tree height

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    On the Use of Generalized Volume Scattering Models for the Improvement of General Polarimetric Model-Based Decomposition

    Get PDF
    Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM) or simplified adaptive volume scattering model, (SAVSM) proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR) data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there exists a trade-off between parameter accuracy and model complexity which constrains the physical validity of solutions and must be further investigated.This work was supported in part by National Nature Science Foundation of China under Grant 41531068, 41371335, 41671356 and 41274010, the Spanish Ministry of Economy and Competitiveness and EU FEDER under Project TIN2014-55413-C2-2-P, and China Scholarship Council under Grant 201406370079
    corecore