22 research outputs found

    The GLINT10 field trial results

    Get PDF
    Autonomous underwater vehicles (AUVs) have gained more interest in recent years for military as well as civilian applications. One potential application of AUVs is for the purpose of undersea surveillance. As research into undersea surveillance using AUVs progresses, issues arise as to how an AUV acquires, acts on, and shares information about the undersea battle space. These issues naturally touch on aspects of vehicle autonomy and underwater communications, and need to be resolved through a spiral development process that includes at sea experimentation. This paper presents a recent AUV implementation for active anti-submarine warfare tested at sea in the summer of 2010. On-board signal processing capabilities and an adaptive behavior are discussed in both a simulation and experimental context. The implications for underwater surveillance using AUVs are discussed

    A Low-Cost Synthetic Aperture Sonar System for Small Agile Vehicles

    Get PDF

    Human activity classification using micro-Doppler signatures and ranging techniques

    Get PDF
    PhD ThesisHuman activity recognition is emerging as a very import research area due to its potential applications in surveillance, assisted living, and military operations. Various sensors including accelerometers, RFID, and cameras, have been applied to achieve automatic human activity recognition. Wearable sensor-based techniques have been well explored. However, some studies have shown that many users are more disinclined to use wearable sensors and also may forget to carry them. Consequently, research in this area started to apply contactless sensing techniques to achieve human activity recognition unobtrusively. In this research, two methods were investigated for human activity recognition, one method is radar-based and the other is using LiDAR (Light Detection and Ranging). Compared to other techniques, Doppler radar and LiDAR have several advantages including all-weather and all-day capabilities, non-contact and nonintrusive features. Doppler radar also has strong penetration to walls, clothes, trees, etc. LiDAR can capture accurate (centimetre-level) locations of targets in real-time. These characteristics make methods based on Doppler radar and LiDAR superior to other techniques. Firstly, this research measured micro-Doppler signatures of different human activities indoors and outdoors using Doppler radars. Micro-Doppler signatures are presented in the frequency domain to reflect different frequency shifts resulted from different components of a moving target. One of the major differences of this research in relation to other relevant research is that a simple pulsed radar system of very low-power was used. The outdoor experiments were performed in places of heavy clutter (grass, trees, uneven terrains), and confusers including animals and drones, were also considered in the experiments. Novel usages of machine learning techniques were implemented to perform subject classification, human activity classification, people counting, and coarse-grained localisation by classifying the micro-Doppler signatures. For the feature extraction of the micro-Doppler signatures, this research proposed the use of a two-directional twodimensional principal component analysis (2D2PCA). The results show that by applying 2D2PCA, the accuracy results of Support Vector Machine (SVM) and k-Nearest Neighbour (kNN) classifiers were greatly improved. A Convolutional Neural Network (CNN) was built for the target classifications of type, number, activity, and coarse localisation. The CNN model obtained very high classification accuracies (97% to 100%) for the outdoor experiments, which were superior to the results obtained by SVM and kNN. The indoor experiments measured several daily activities with the focus on dietary activities (eating and drinking). An overall classification rate of 92.8% was obtained in activity recognition in a kitchen scenario using the CNN. Most importantly, in nearly real-time, the proposed approach successfully recognized human activities in more than 89% of the time. This research also investigated the effects on the classification performance of the frame length of the sliding window, the angle of the direction of movement, and the number of radars used; providing valuable guidelines for machine learning modeling and experimental setup of micro-Doppler based research and applications. Secondly, this research used a two dimensional (2D) LiDAR to perform human activity detection indoors. LiDAR is a popular surveying method that has been widely used in localisation, navigation, and mapping. This research proposed the use of a 2D LiDAR to perform multiple people activity recognition by classifying their trajectories. Points collected by the LiDAR were clustered and classified into human and non-human classes. For the human class, the Kalman filter was used to track their trajectories, and the trajectories were further segmented and labelled with their corresponding activities. Spatial transformation was used for trajectory augmentation in order to overcome the problem of unbalanced classes and boost the performance of human activity recognition. Finally, a Long Short-term Memory (LSTM) network and a (Temporal Convolutional Network) TCN was built to classify the trajectory samples into fifteen activity classes. The TCN achieved the best result of 99.49% overall accuracy. In comparison, the proposed TCN slightly outperforms the LSTM. Both of them outperform hidden Markov Model (HMM), dynamic time warping (DTW), and SVM with a wide margin

    Autumn 2021 Full Issue

    Get PDF

    Adaptive ping control for track-holding in multistatic active sonar networks

    No full text
    corecore