4,261 research outputs found

    Unstructured mesh algorithms for aerodynamic calculations

    Get PDF
    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined

    On a general implementation of hh- and pp-adaptive curl-conforming finite elements

    Get PDF
    Edge (or N\'ed\'elec) finite elements are theoretically sound and widely used by the computational electromagnetics community. However, its implementation, specially for high order methods, is not trivial, since it involves many technicalities that are not properly described in the literature. To fill this gap, we provide a comprehensive description of a general implementation of edge elements of first kind within the scientific software project FEMPAR. We cover into detail how to implement arbitrary order (i.e., pp-adaptive) elements on hexahedral and tetrahedral meshes. First, we set the three classical ingredients of the finite element definition by Ciarlet, both in the reference and the physical space: cell topologies, polynomial spaces and moments. With these ingredients, shape functions are automatically implemented by defining a judiciously chosen polynomial pre-basis that spans the local finite element space combined with a change of basis to automatically obtain a canonical basis with respect to the moments at hand. Next, we discuss global finite element spaces putting emphasis on the construction of global shape functions through oriented meshes, appropriate geometrical mappings, and equivalence classes of moments, in order to preserve the inter-element continuity of tangential components of the magnetic field. Finally, we extend the proposed methodology to generate global curl-conforming spaces on non-conforming hierarchically refined (i.e., hh-adaptive) meshes with arbitrary order finite elements. Numerical results include experimental convergence rates to test the proposed implementation

    Parallel 3-D marine controlled-source electromagnetic modelling using high-order tetrahedral Nédélec elements

    Get PDF
    We present a parallel and high-order Nédélec finite element solution for the marine controlled-source electromagnetic (CSEM) forward problem in 3-D media with isotropic conductivity. Our parallel Python code is implemented on unstructured tetrahedral meshes, which support multiple-scale structures and bathymetry for general marine 3-D CSEM modelling applications. Based on a primary/secondary field approach, we solve the diffusive form of Maxwell’s equations in the low-frequency domain. We investigate the accuracy and performance advantages of our new high-order algorithm against a low-order implementation proposed in our previous work. The numerical precision of our high-order method has been successfully verified by comparisons against previously published results that are relevant in terms of scale and geological properties. A convergence study confirms that high-order polynomials offer a better trade-off between accuracy and computation time. However, the optimum choice of the polynomial order depends on both the input model and the required accuracy as revealed by our tests. Also, we extend our adaptive-meshing strategy to high-order tetrahedral elements. Using adapted meshes to both physical parameters and high-order schemes, we are able to achieve a significant reduction in computational cost without sacrificing accuracy in the modelling. Furthermore, we demonstrate the excellent performance and quasi-linear scaling of our implementation in a state-of-the-art high-performance computing architecture.This project has received funding from the European Union's Horizon 2020 programme under the Marie Sklodowska-Curie grant agreement No. 777778. Furthermore, the research leading to these results has received funding from the European Union's Horizon 2020 programme under the ChEESE Project (https://cheese-coe.eu/ ), grant agreement No. 823844. In addition, the authors would also like to thank the support of the Ministerio de Educación y Ciencia (Spain) under Projects TEC2016-80386-P and TIN2016-80957-P. The authors would like to thank the Editors-in-Chief and to both reviewers, Dr. Martin Cuma and Dr. Raphael Rochlitz, for their valuable comments and suggestions which helped to improve the quality of the manuscript. This work benefited from the valuable suggestions, comments, and proofreading of Dr. Otilio Rojas (BSC). Last but not least, Octavio Castillo-Reyes thanks Natalia Gutierrez (BSC) for her support in CSEM modeling with BSIT.Peer ReviewedPostprint (author's final draft

    Phase-field boundary conditions for the voxel finite cell method: surface-free stress analysis of CT-based bone structures

    Get PDF
    The voxel finite cell method employs unfitted finite element meshes and voxel quadrature rules to seamlessly transfer CT data into patient-specific bone discretizations. The method, however, still requires the explicit parametrization of boundary surfaces to impose traction and displacement boundary conditions, which constitutes a potential roadblock to automation. We explore a phase-field based formulation for imposing traction and displacement constraints in a diffuse sense. Its essential component is a diffuse geometry model generated from metastable phase-field solutions of the Allen-Cahn problem that assumes the imaging data as initial condition. Phase-field approximations of the boundary and its gradient are then employed to transfer all boundary terms in the variational formulation into volumetric terms. We show that in the context of the voxel finite cell method, diffuse boundary conditions achieve the same accuracy as boundary conditions defined over explicit sharp surfaces, if the inherent length scales, i.e., the interface width of the phase-field, the voxel spacing and the mesh size, are properly related. We demonstrate the flexibility of the new method by analyzing stresses in a human femur and a vertebral body

    A mesh adaptivity scheme on the Landau-de Gennes functional minimization case in 3D, and its driving efficiency

    Full text link
    This paper presents a 3D mesh adaptivity strategy on unstructured tetrahedral meshes by a posteriori error estimates based on metrics, studied on the case of a nonlinear finite element minimization scheme for the Landau-de Gennes free energy functional of nematic liquid crystals. Newton's iteration for tensor fields is employed with steepest descent method possibly stepping in. Aspects relating the driving of mesh adaptivity within the nonlinear scheme are considered. The algorithmic performance is found to depend on at least two factors: when to trigger each single mesh adaptation, and the precision of the correlated remeshing. Each factor is represented by a parameter, with its values possibly varying for every new mesh adaptation. We empirically show that the time of the overall algorithm convergence can vary considerably when different sequences of parameters are used, thus posing a question about optimality. The extensive testings and debugging done within this work on the simulation of systems of nematic colloids substantially contributed to the upgrade of an open source finite element-oriented programming language to its 3D meshing possibilities, as also to an outer 3D remeshing module
    corecore