26,285 research outputs found

    Applying Recommender Systems and Adaptive Hypermedia for e-Learning Personalizatio

    Get PDF
    Learners learn differently because they are different -- and they grow more distinctive as they mature. Personalized learning occurs when e-learning systems make deliberate efforts to design educational experiences that fit the needs, goals, talents, and interests of their learners. Researchers had recently begun to investigate various techniques to help teachers improve e-learning systems. In this paper we present our design and implementation of an adaptive and intelligent web-based programming tutoring system -- Protus, which applies recommendation and adaptive hypermedia techniques. This system aims at automatically guiding the learner's activities and recommend relevant links and actions to him/her during the learning process. Experiments on real data sets show the suitability of using both recommendation and hypermedia techniques in order to suggest online learning activities to learners based on their preferences, knowledge and the opinions of the users with similar characteristics

    Fast Adaptively Weighted Matrix Factorization for Recommendation with Implicit Feedback

    Full text link
    Recommendation from implicit feedback is a highly challenging task due to the lack of the reliable observed negative data. A popular and effective approach for implicit recommendation is to treat unobserved data as negative but downweight their confidence. Naturally, how to assign confidence weights and how to handle the large number of the unobserved data are two key problems for implicit recommendation models. However, existing methods either pursuit fast learning by manually assigning simple confidence weights, which lacks flexibility and may create empirical bias in evaluating user's preference; or adaptively infer personalized confidence weights but suffer from low efficiency. To achieve both adaptive weights assignment and efficient model learning, we propose a fast adaptively weighted matrix factorization (FAWMF) based on variational auto-encoder. The personalized data confidence weights are adaptively assigned with a parameterized neural network (function) and the network can be inferred from the data. Further, to support fast and stable learning of FAWMF, a new specific batch-based learning algorithm fBGD has been developed, which trains on all feedback data but its complexity is linear to the number of observed data. Extensive experiments on real-world datasets demonstrate the superiority of the proposed FAWMF and its learning algorithm fBGD

    A Personalized System for Conversational Recommendations

    Full text link
    Searching for and making decisions about information is becoming increasingly difficult as the amount of information and number of choices increases. Recommendation systems help users find items of interest of a particular type, such as movies or restaurants, but are still somewhat awkward to use. Our solution is to take advantage of the complementary strengths of personalized recommendation systems and dialogue systems, creating personalized aides. We present a system -- the Adaptive Place Advisor -- that treats item selection as an interactive, conversational process, with the program inquiring about item attributes and the user responding. Individual, long-term user preferences are unobtrusively obtained in the course of normal recommendation dialogues and used to direct future conversations with the same user. We present a novel user model that influences both item search and the questions asked during a conversation. We demonstrate the effectiveness of our system in significantly reducing the time and number of interactions required to find a satisfactory item, as compared to a control group of users interacting with a non-adaptive version of the system

    Meta-Learning with Adaptive Weighted Loss for Imbalanced Cold-Start Recommendation

    Full text link
    Sequential recommenders have made great strides in capturing a user's preferences. Nevertheless, the cold-start recommendation remains a fundamental challenge as they typically involve limited user-item interactions for personalization. Recently, gradient-based meta-learning approaches have emerged in the sequential recommendation field due to their fast adaptation and easy-to-integrate abilities. The meta-learning algorithms formulate the cold-start recommendation as a few-shot learning problem, where each user is represented as a task to be adapted. While meta-learning algorithms generally assume that task-wise samples are evenly distributed over classes or values, user-item interactions in real-world applications do not conform to such a distribution (e.g., watching favorite videos multiple times, leaving only positive ratings without any negative ones). Consequently, imbalanced user feedback, which accounts for the majority of task training data, may dominate the user adaptation process and prevent meta-learning algorithms from learning meaningful meta-knowledge for personalized recommendations. To alleviate this limitation, we propose a novel sequential recommendation framework based on gradient-based meta-learning that captures the imbalanced rating distribution of each user and computes adaptive loss for user-specific learning. Our work is the first to tackle the impact of imbalanced ratings in cold-start sequential recommendation scenarios. Through extensive experiments conducted on real-world datasets, we demonstrate the effectiveness of our framework.Comment: Accepted by CIKM 202

    LambdaOpt: Learn to Regularize Recommender Models in Finer Levels

    Full text link
    Recommendation models mainly deal with categorical variables, such as user/item ID and attributes. Besides the high-cardinality issue, the interactions among such categorical variables are usually long-tailed, with the head made up of highly frequent values and a long tail of rare ones. This phenomenon results in the data sparsity issue, making it essential to regularize the models to ensure generalization. The common practice is to employ grid search to manually tune regularization hyperparameters based on the validation data. However, it requires non-trivial efforts and large computation resources to search the whole candidate space; even so, it may not lead to the optimal choice, for which different parameters should have different regularization strengths. In this paper, we propose a hyperparameter optimization method, LambdaOpt, which automatically and adaptively enforces regularization during training. Specifically, it updates the regularization coefficients based on the performance of validation data. With LambdaOpt, the notorious tuning of regularization hyperparameters can be avoided; more importantly, it allows fine-grained regularization (i.e. each parameter can have an individualized regularization coefficient), leading to better generalized models. We show how to employ LambdaOpt on matrix factorization, a classical model that is representative of a large family of recommender models. Extensive experiments on two public benchmarks demonstrate the superiority of our method in boosting the performance of top-K recommendation.Comment: Accepted by KDD 201

    A design of a multi-agent recommendation system using ontologies and rule-based reasoning: pandemic context

    Get PDF
    Learners attend their courses in remote or hybrid systems find it difficult to follow one size fits all courses. These difficulties have increased with the pandemic, lockdown, and the stress they cause. Hence, the role of adaptive systems to recommend personalized learning resources according to the learner's profile. The purpose of this paper is to design a system for recommending learning objects according learner's condition, including his mental state, his COVID-19 history, as well as his social situation and ability to connect to the e-learning system on a regular basis. In this article, we present an architecture of a recommendation system for personalized learning objects based on ontologies and on rule-based reasoning, and we will also describe the inference rules required for the adaptation of the educational content to the needs of the learners, taking into account the learner’s health and mental state, as well as his social situation. The system designed, and validated using the unified modeling language (UML). It additionally allows teachers to have a holistic view of learners’ progress and situations
    • …
    corecore