4,746 research outputs found

    Multidisciplinary computational aerosciences

    Get PDF
    As the challenges of single disciplinary computational physics are met, such as computational fluid dynamics, computational structural mechanics, computational propulsion, computational aeroacoustics, computational electromagnetics, etc., scientists have begun investigating the combination of these single disciplines into what is being called multidisciplinary computational aerosciences (MCAS). The combination of several disciplines not only offers simulation realism but also formidable computational challenges. The solution of such problems will require computers orders of magnitude larger than those currently available. Such computer power can only be supplied by massively parallel machines because of the current speed-of-light limitation of conventional serial systems. Even with such machines, MCAS problems will require hundreds of hours for their solution. To efficiently utilize such a machine, research is required in three areas that include parallel architectures, systems software, and applications software. The main emphasis of this paper is the applications software element. Examples that demonstrate application software for multidisciplinary problems currently being solved at NASA Ames Research Center are presented. Pacing items for MCAS are discussed such as solution methodology, physical modeling, computer power, and multidisciplinary validation experiments

    Policy-based techniques for self-managing parallel applications

    Get PDF
    This paper presents an empirical investigation of policy-based self-management techniques for parallel applications executing in loosely-coupled environments. The dynamic and heterogeneous nature of these environments is discussed and the special considerations for parallel applications are identified. An adaptive strategy for the run-time deployment of tasks of parallel applications is presented. The strategy is based on embedding numerous policies which are informed by contextual and environmental inputs. The policies govern various aspects of behaviour, enhancing flexibility so that the goals of efficiency and performance are achieved despite high levels of environmental variability. A prototype self-managing parallel application is used as a vehicle to explore the feasibility and benefits of the strategy. In particular, several aspects of stability are investigated. The implementation and behaviour of three policies are discussed and sample results examined

    Adjusting process count on demand for petascale global optimization⋆

    Get PDF
    There are many challenges that need to be met before efficient and reliable computation at the petascale is possible. Many scientific and engineering codes running at the petascale are likely to be memory intensive, which makes thrashing a serious problem for many petascale applications. One way to overcome this challenge is to use a dynamic number of processes, so that the total amount of memory available for the computation can be increased on demand. This paper describes modifications made to the massively parallel global optimization code pVTdirect in order to allow for a dynamic number of processes. In particular, the modified version of the code monitors memory use and spawns new processes if the amount of available memory is determined to be insufficient. The primary design challenges are discussed, and performance results are presented and analyzed

    Distributed evolutionary algorithms and their models: A survey of the state-of-the-art

    Get PDF
    The increasing complexity of real-world optimization problems raises new challenges to evolutionary computation. Responding to these challenges, distributed evolutionary computation has received considerable attention over the past decade. This article provides a comprehensive survey of the state-of-the-art distributed evolutionary algorithms and models, which have been classified into two groups according to their task division mechanism. Population-distributed models are presented with master-slave, island, cellular, hierarchical, and pool architectures, which parallelize an evolution task at population, individual, or operation levels. Dimension-distributed models include coevolution and multi-agent models, which focus on dimension reduction. Insights into the models, such as synchronization, homogeneity, communication, topology, speedup, advantages and disadvantages are also presented and discussed. The study of these models helps guide future development of different and/or improved algorithms. Also highlighted are recent hotspots in this area, including the cloud and MapReduce-based implementations, GPU and CUDA-based implementations, distributed evolutionary multiobjective optimization, and real-world applications. Further, a number of future research directions have been discussed, with a conclusion that the development of distributed evolutionary computation will continue to flourish

    Preparing HPC Applications for the Exascale Era: A Decoupling Strategy

    Full text link
    Production-quality parallel applications are often a mixture of diverse operations, such as computation- and communication-intensive, regular and irregular, tightly coupled and loosely linked operations. In conventional construction of parallel applications, each process performs all the operations, which might result inefficient and seriously limit scalability, especially at large scale. We propose a decoupling strategy to improve the scalability of applications running on large-scale systems. Our strategy separates application operations onto groups of processes and enables a dataflow processing paradigm among the groups. This mechanism is effective in reducing the impact of load imbalance and increases the parallel efficiency by pipelining multiple operations. We provide a proof-of-concept implementation using MPI, the de-facto programming system on current supercomputers. We demonstrate the effectiveness of this strategy by decoupling the reduce, particle communication, halo exchange and I/O operations in a set of scientific and data-analytics applications. A performance evaluation on 8,192 processes of a Cray XC40 supercomputer shows that the proposed approach can achieve up to 4x performance improvement.Comment: The 46th International Conference on Parallel Processing (ICPP-2017

    An Application Perspective on High-Performance Computing and Communications

    Get PDF
    We review possible and probable industrial applications of HPCC focusing on the software and hardware issues. Thirty-three separate categories are illustrated by detailed descriptions of five areas -- computational chemistry; Monte Carlo methods from physics to economics; manufacturing; and computational fluid dynamics; command and control; or crisis management; and multimedia services to client computers and settop boxes. The hardware varies from tightly-coupled parallel supercomputers to heterogeneous distributed systems. The software models span HPF and data parallelism, to distributed information systems and object/data flow parallelism on the Web. We find that in each case, it is reasonably clear that HPCC works in principle, and postulate that this knowledge can be used in a new generation of software infrastructure based on the WebWindows approach, and discussed in an accompanying paper
    corecore