2,588 research outputs found

    Computer-Aided Diagnosis for Acute Stroke in CT Images

    Get PDF

    Diffusion - weighted MR imaging versus CT brain – Diagnostic accuracy in hyperacute stroke.

    Get PDF
    PURPOSE : To compare the diagnostic accuracy of non-enhanced computed tomography (NECT) and Diffusion-weighted magnetic resonance imaging (DW MRI) in a consecutive series of patients at presentation to the radiology department with symptoms of hyperacute stroke and aiding the clinicians in instituting the treatment protocol at the earliest. MATERIALS AND METHODS : Clinical data, NECT and DW MRI and conventional MR images obtained in 200 consecutive patients with suspected hyperacute stroke were examined. Results of the diffusion-weighted imaging and NECT were compared with each other and correlated with the final discharge diagnosis. RESULTS : Of the 200 patients with symptoms and signs of stroke within the hyperacute stroke window period, diffusion-weighted images indicated stroke in 180 patients. Diffusionweighted images were negative in 20 patients. The 20 patients with negative DWI were diagnosed with stroke mimics. Of the 200 patients, NECT was positive in 99 patients with imaging features of early infarction signs. Statistical reviews yielded 96.7% sensitivity (95% CI, 92.8%-98.7%) and 90% Specificity (95% CI, 68.3%- 98.7%) for diffusion-weighted MR imaging and NECT had a sensitivity and specificity of 88% (95% CI, 80.9%- 94,3%) and 63.5% (95% CI, 37%-71,5%) respectively. The DWMRI had a higher accuracy rate of 96% (95% CI, 92.3%, 98.2%) than with 50.5% in NECT (95%CI 43.3%, 57.6%). CONCLUSION: DWMRI is replacing NECT in the imaging of hyperacute stroke patients. DWI and NECT imaging done with the same delay after onset of symptoms of hyperacute stroke resulted in significant differences in diagnostic accuracy. The study concludes with higher accuracy rate of diffusion-weighted MR imaging in diagnosing hyperacute stroke than NECT. The size of the lesion measured by DWI scans and apparent diffusion coefficient (ADC) values are potential imaging parameters for predicting the clinical outcome in hyperacute stroke patients. Our study supports the inclusion of DWMRI in the routine imaging protocol for diagnosing hyperacute stroke and thus aiding the clinicians in deciding the treatment protocols at the earliest

    Applications of CT Perfusion-Based Triaging and Prognostication in Acute Ischemic Stroke

    Get PDF
    CT Perfusion (CTP) is a minimally invasive imaging technique that aids acute ischemic stroke (AIS) triage and prognostication by determining tissue viability based on hemodynamic parameters. The goals of this research are to determine: 1) CTP thresholds for estimation of infarct and penumbra volume, 2) how CTP scan duration impacts infarct and penumbra volume estimates, and 3) reliability of CTP for predicting functional outcomes following intra-arterial therapy (IAT). Chapter 2 introduced an experimental study for determining ischemia-time dependent thresholds for brain infarction using multimodal imaging in a porcine stroke model that is easier to implement than previous large animal stroke models. CTP determined an absolute cerebral blood flow (CBF) threshold of 12.6±2.8mL∙min-1∙100g-1 for brain infarction after 3h of ischemia, which was close to that derived using hydrogen clearance in a previous study by Jones et al (Journal of Neurosurgery, 1981;54(6):773-782). Chapter 3 retrospectively investigated the impact of CTP scan duration on cerebral blood volume (CBV), CBF, and time-to-maximum (Tmax) and found optimal scan durations that minimized radiation dose while not under- or over-estimating infarct volumes measured using two previously derived CBF thresholds for infarction. We found that CBV and Tmax decreased at shorter scan durations, whereas CBF was independent of scan duration, consequently, infarct volume estimated by both CBF thresholds was independent of scan duration. Chapter 4 compared reperfusion seen on follow-up CTP to reperfusion predicted by post-IAT digital subtraction angiography (DSA) and the ability of the two modalities to predict good 90-day functional outcome in a retrospective study. We found that patients with ‘complete reperfusion’ grades on DSA often had ischemic tissue on follow-up CTP and that follow-up CTP had superior specificity and accuracy for predicting functional outcome compared to DSA. In summary, this research has shown that CBF thresholds can reliably detect infarct in AIS and are independent of scan duration, allowing radiation dose to be minimized by limiting scans to 40s without compromising accuracy of infarct volume estimates. Finally, CTP is a more specific and accurate predictor of functional outcome than the commonly used post-procedural DSA, this could help select patients for neuroprotective therapy

    Acute lung injury in paediatric intensive care: course and outcome

    Get PDF
    Introduction: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) carry a high morbidity and mortality (10-90%). ALI is characterised by non-cardiogenic pulmonary oedema and refractory hypoxaemia of multifactorial aetiology [1]. There is limited data about outcome particularly in children. Methods This retrospective cohort study of 85 randomly selected patients with respiratory failure recruited from a prospectively collected database represents 7.1% of 1187 admissions. They include those treated with High Frequency Oscillation Ventilation (HFOV). The patients were admitted between 1 November 1998 and 31 October 2000. Results: Of the 85, 49 developed acute lung injury and 47 had ARDS. There were 26 males and 23 females with a median age and weight of 7.7 months (range 1 day-12.8 years) and 8 kg (range 0.8-40 kg). There were 7 deaths giving a crude mortality of 14.3%, all of which fulfilled the Consensus I [1] criteria for ARDS. Pulmonary occlusion pressures were not routinely measured. The A-a gradient and PaO2/FiO2 ratio (median + [95% CI]) were 37.46 [31.82-43.1] kPa and 19.12 [15.26-22.98] kPa respectively. The non-survivors had a significantly lower PaO2/FiO2 ratio (13 [6.07-19.93] kPa) compared to survivors (23.85 [19.57-28.13] kPa) (P = 0.03) and had a higher A-a gradient (51.05 [35.68-66.42] kPa) compared to survivors (36.07 [30.2-41.94]) kPa though not significant (P = 0.06). Twenty-nine patients (59.2%) were oscillated (Sensormedics 3100A) including all 7 non-survivors. There was no difference in ventilation requirements for CMV prior to oscillation. Seventeen of the 49 (34.7%) were treated with Nitric Oxide including 5 out of 7 non-survivors (71.4%). The median (95% CI) number of failed organs was 3 (1.96-4.04) for non-survivors compared to 1 (0.62-1.62) for survivors (P = 0.03). There were 27 patients with isolated respiratory failure all of whom survived. Six (85.7%) of the non-survivors also required cardiovascular support.Conclusion: A crude mortality of 14.3% compares favourably to published data. The A-a gradient and PaO2/FiO2 ratio may be of help in morbidity scoring in paediatric ARDS. Use of Nitric Oxide and HFOV is associated with increased mortality, which probably relates to the severity of disease. Multiple organ failure particularly respiratory and cardiac disease is associated with increased mortality. ARDS with isolated respiratory failure carries a good prognosis in children

    Imaging in Acute Stroke—New Options and State of the Art

    Get PDF

    Abstracts of the 33rd International Austrian Winter Symposium : Zell am See, Austria. 24-27 January 2018.

    Get PDF

    Added value of acute multimodal CT-based imaging (MCTI) : a comprehensive analysis

    Get PDF
    Introduction: MCTI is used to assess acute ischemic stroke (AIS) patients.We postulated that use of MCTI improves patient outcome regardingindependence and mortality.Methods: From the ASTRAL registry, all patients with an AIS and a non-contrast-CT (NCCT), angio-CT (CTA) or perfusion-CT (CTP) within24 h from onset were included. Demographic, clinical, biological, radio-logical, and follow-up caracteristics were collected. Significant predictorsof MCTI use were fitted in a multivariate analysis. Patients undergoingCTA or CTA&CTP were compared with NCCT patients with regards tofavourable outcome (mRS ≤ 2) at 3 months, 12 months mortality, strokemechanism, short-term renal function, use of ancillary diagnostic tests,duration of hospitalization and 12 months stroke recurrence

    Advances in the Treatment of Ischemic Stroke

    Get PDF
    In recent years research on ischemic stroke has developed powerful therapeutic tools. The novel frontiers of stem cells therapy and of hypothermia have been explored, and novel brain repair mechanisms have been discovered. Limits to intravenous thrombolysis have been advanced and powerful endovascular tools have been put at the clinicians' disposal. Surgical decompression in malignant stroke has significantly improved the prognosis of this often fatal condition. This book includes contributions from scientists active in this innovative research. Stroke physicians, students, nurses and technicians will hopefully use it as a tool of continuing medical education to update their knowledge in this rapidly changing field
    corecore