543 research outputs found

    Basic research planning in mathematical pattern recognition and image analysis

    Get PDF
    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Automated Building Information Extraction and Evaluation from High-resolution Remotely Sensed Data

    Get PDF
    The two-dimensional (2D) footprints and three-dimensional (3D) structures of buildings are of great importance to city planning, natural disaster management, and virtual environmental simulation. As traditional manual methodologies for collecting 2D and 3D building information are often both time consuming and costly, automated methods are required for efficient large area mapping. It is challenging to extract building information from remotely sensed data, considering the complex nature of urban environments and their associated intricate building structures. Most 2D evaluation methods are focused on classification accuracy, while other dimensions of extraction accuracy are ignored. To assess 2D building extraction methods, a multi-criteria evaluation system has been designed. The proposed system consists of matched rate, shape similarity, and positional accuracy. Experimentation with four methods demonstrates that the proposed multi-criteria system is more comprehensive and effective, in comparison with traditional accuracy assessment metrics. Building height is critical for building 3D structure extraction. As data sources for height estimation, digital surface models (DSMs) that are derived from stereo images using existing software typically provide low accuracy results in terms of rooftop elevations. Therefore, a new image matching method is proposed by adding building footprint maps as constraints. Validation demonstrates that the proposed matching method can estimate building rooftop elevation with one third of the error encountered when using current commercial software. With an ideal input DSM, building height can be estimated by the elevation contrast inside and outside a building footprint. However, occlusions and shadows cause indistinct building edges in the DSMs generated from stereo images. Therefore, a “building-ground elevation difference model” (EDM) has been designed, which describes the trend of the elevation difference between a building and its neighbours, in order to find elevation values at bare ground. Experiments using this novel approach report that estimated building height with 1.5m residual, which out-performs conventional filtering methods. Finally, 3D buildings are digitally reconstructed and evaluated. Current 3D evaluation methods did not present the difference between 2D and 3D evaluation methods well; traditionally, wall accuracy is ignored. To address these problems, this thesis designs an evaluation system with three components: volume, surface, and point. As such, the resultant multi-criteria system provides an improved evaluation method for building reconstruction

    Mapping and monitoring forest remnants : a multiscale analysis of spatio-temporal data

    Get PDF
    KEYWORDS : Landsat, time series, machine learning, semideciduous Atlantic forest, Brazil, wavelet transforms, classification, change detectionForests play a major role in important global matters such as carbon cycle, climate change, and biodiversity. Besides, forests also influence soil and water dynamics with major consequences for ecological relations and decision-making. One basic requirement to quantify and model these processes is the availability of accurate maps of forest cover. Data acquisition and analysis at appropriate scales is the keystone to achieve the mapping accuracy needed for development and reliable use of ecological models.The current and upcoming production of high-resolution data sets plus the ever-increasing time series that have been collected since the seventieth must be effectively explored. Missing values and distortions further complicate the analysis of this data set. Thus, integration and proper analysis is of utmost importance for environmental research. New conceptual models in environmental sciences, like the perception of multiple scales, require the development of effective implementation techniques.This thesis presents new methodologies to map and monitor forests on large, highly fragmented areas with complex land use patterns. The use of temporal information is extensively explored to distinguish natural forests from other land cover types that are spectrally similar. In chapter 4, novel schemes based on multiscale wavelet analysis are introduced, which enabled an effective preprocessing of long time series of Landsat data and improved its applicability on environmental assessment.In chapter 5, the produced time series as well as other information on spectral and spatial characteristics were used to classify forested areas in an experiment relating a number of combinations of attribute features. Feature sets were defined based on expert knowledge and on data mining techniques to be input to traditional and machine learning algorithms for pattern recognition, viz . maximum likelihood, univariate and multivariate decision trees, and neural networks. The results showed that maximum likelihood classification using temporal texture descriptors as extracted with wavelet transforms was most accurate to classify the semideciduous Atlantic forest in the study area.In chapter 6, a multiscale approach to digital change detection was developed to deal with multisensor and noisy remotely sensed images. Changes were extracted according to size classes minimising the effects of geometric and radiometric misregistration.Finally, in chapter 7, an automated procedure for GIS updating based on feature extraction, segmentation and classification was developed to monitor the remnants of semideciduos Atlantic forest. The procedure showed significant improvements over post classification comparison and direct multidate classification based on artificial neural networks.</p

    Earth Resources. A continuing bibliography with indexes, issue 34, July 1982

    Get PDF
    This bibliography lists 567 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between April 1, and June 30, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • …
    corecore