1,099 research outputs found

    Implicit personalization in driving assistance: State-of-the-art and open issues

    Get PDF
    In recent decades, driving assistance systems have been evolving towards personalization for adapting to different drivers. With the consideration of driving preferences and driver characteristics, these systems become more acceptable and trustworthy. This article presents a survey on recent advances in implicit personalized driving assistance. We classify the collection of work into three main categories: 1) personalized Safe Driving Systems (SDS), 2) personalized Driver Monitoring Systems (DMS), and 3) personalized In-vehicle Information Systems (IVIS). For each category, we provide a comprehensive review of current applications and related techniques along with the discussion of industry status, benefits of personalization, application prospects, and future focal points. Both relevant driving datasets and open issues about personalized driving assistance are discussed to facilitate future research. By creating an organized categorization of the field, we hope that this survey could not only support future research and the development of new technologies for personalized driving assistance but also facilitate the application of these techniques within the driving automation community</h2

    A variable weight adaptive cruise control strategy based on lane change recognition of leading vehicle

    Get PDF
    The traditional adaptive cruise system is responsible for delay in recognizing the cut-in/cut-out behaviour of front vehicle, and there is significant longitudinal acceleration of the vehicle fluctuation leading to reduced driver’s comfort level and even dangerous situation. In this paper, the next generation simulation data set and back propagation (BP) neural network are used to train the vehicle lane change recognition model to recognize the lane change behaviour of the preceding vehicle. The higher controller adopts variable weight linear quadratic optimal control to adjust the weight parameters according to the recognition results of front vehicle to reduce the fluctuation of vehicle acceleration. The lower layer adopts fuzzy proportional-integral-derivative (PID) control to follow the expected acceleration and builds the vehicle inverse dynamic model. Through CarSim/Simulink co-simulation, the results show that, under the cut-in or cut-out and working conditions, the behaviour of the leading vehicle can be recognized, following target can be switched in advance, weight parameters can be adjusted and the large fluctuation of longitudinal acceleration can be reduced

    Observer Based Traction/Braking Control Design for High Speed Trains Considering Adhesion Nonlinearity

    Get PDF
    Train traction/braking control, one of the key enabling technologies for automatic train operation, literally takes its action through adhesion force. However, adhesion coefficient of high speed train (HST) is uncertain in general because it varies with wheel-rail surface condition and running speed; thus, it is extremely difficult to be measured, which makes traction/braking control design and implementation of HSTs greatly challenging. In this work, force observers are applied to estimate the adhesion force or/and the resistance, based on which simple traction/braking control schemes are established under the consideration of actual wheel-rail adhesion condition. It is shown that the proposed controllers have simple structure and can be easily implemented from real applications. Numerical simulation also validates the effectiveness of the proposed control scheme

    Physics-augmented models to simulate commercial adaptive cruise control (ACC) systems

    Get PDF
    This paper investigates the accuracy and robustness of car-following (CF) and adaptive cruise control (ACC) models in reproducing measured trajectories of commercial ACCs. To this aim, a general modelling framework is proposed, in which ACC and CF models have been incrementally augmented with physics-based extensions: namely, perception delay, linear or nonlinear vehicle dynamics, and acceleration constraints. This framework has been applied to the Intelligent Driver Model (IDM), Gipps’ model, and to three basic ACC algorithms. These are linear controllers which are coupled with a constant time-headway spacing policy, and with two other policies derived from the traffic flow theory: the IDM desired distance function, and Gipps’ equilibrium distance-speed function. The ninety models resulting from the combination of the five base models with the aforementioned extensions, have been assessed and compared through a vast calibration and validation experiment against measured trajectory data of vehicles driven by ACC systems. Overall, the study has shown that physics-based extensions provide limited improvements to the accuracy of existing models. In addition, if an investigation against measured data is not carried out, it is not possible to argue which extension is the most suited for a specific model. The linear controller with Gipps’ spacing policy has resulted the most accurate model, while the IDM the most robust to different input trajectories. Eventually, all models have failed to capture the behaviour of some car brands – just as models fail with some human drivers. Therefore, the choice of the “best” model is independent of the car brand to simulate

    Implicit Personalization in Driving Assistance: State-of-the-Art and Open Issues

    Get PDF
    In recent decades, driving assistance systems have been evolving towards personalization for adapting to different drivers. With considering personal driving preferences and characteristics, these systems become more acceptable and trustworthy. This paper presents a survey of recent advances in implicit personalized driving assistance. We classify the collection of work into three main categories: 1) personalized Safe Driving Systems (SDS), 2) personalized Driver Monitoring Systems (DMS), and 3) personalized In-vehicle Information Systems (IVIS). For each category, we provide a comprehensive review of current applications and related techniques along with the discussion of industry status, gains of personalization, application prospects, and future focal points. Several existing driving datasets are summarized and open issues of personalized driving assistance are also suggested to facilitate future research. By creating an organized categorization of the field, this survey could not only support future research and the development of new technologies for personalized driving assistance but also facilitate the use of these techniques by researchers within the driving automation community

    Identification and challenge of human factors under the trend of MASS development

    Get PDF
    • …
    corecore