166 research outputs found

    Detection of a signal in linear subspace with bounded mismatch

    Get PDF
    We consider the problem of detecting a signal of interest in a background of noise with unknown covariance matrix, taking into account a possible mismatch between the actual steering vector and the presumed one. We assume that the former belongs to a known linear subspace, up to a fraction of its energy. When the subspace of interest consists of the presumed steering vector, this amounts to assuming that the angle between the actual steering vector and the presumed steering vector is upper bounded. Within this framework, we derive the generalized likelihood ratio test (GLRT). We show that it involves solving a minimization problem with the constraint that the signal of interest lies inside a cone. We present a computationally efficient algorithm to find the maximum likelihood estimator (MLE) based on the Lagrange multiplier technique. Numerical simulations illustrate the performance and the robustness of this new detector, and compare it with the adaptive coherence estimator which assumes that the steering vector lies entirely in a subspace

    Coercive Region-level Registration for Multi-modal Images

    Full text link
    We propose a coercive approach to simultaneously register and segment multi-modal images which share similar spatial structure. Registration is done at the region level to facilitate data fusion while avoiding the need for interpolation. The algorithm performs alternating minimization of an objective function informed by statistical models for pixel values in different modalities. Hypothesis tests are developed to determine whether to refine segmentations by splitting regions. We demonstrate that our approach has significantly better performance than the state-of-the-art registration and segmentation methods on microscopy images.Comment: This work has been accepted to International Conference on Image Processing (ICIP) 201

    Mobility and Handoff Management in Wireless Networks

    Get PDF
    With the increasing demands for new data and real-time services, wireless networks should support calls with different traffic characteristics and different Quality of Service (QoS)guarantees. In addition, various wireless technologies and networks exist currently that can satisfy different needs and requirements of mobile users. Since these different wireless networks act as complementary to each other in terms of their capabilities and suitability for different applications, integration of these networks will enable the mobile users to be always connected to the best available access network depending on their requirements. This integration of heterogeneous networks will, however, lead to heterogeneities in access technologies and network protocols. To meet the requirements of mobile users under this heterogeneous environment, a common infrastructure to interconnect multiple access networks will be needed. In this chapter, the design issues of a number of mobility management schemes have been presented. Each of these schemes utilizes IP-based technologies to enable efficient roaming in heterogeneous network. Efficient handoff mechanisms are essential for ensuring seamless connectivity and uninterrupted service delivery. A number of handoff schemes in a heterogeneous networking environment are also presented in this chapter.Comment: 28 pages, 11 figure

    How to compare noisy patches? Patch similarity beyond Gaussian noise

    No full text
    International audienceMany tasks in computer vision require to match image parts. While higher-level methods consider image features such as edges or robust descriptors, low-level approaches (so-called image-based) compare groups of pixels (patches) and provide dense matching. Patch similarity is a key ingredient to many techniques for image registration, stereo-vision, change detection or denoising. Recent progress in natural image modeling also makes intensive use of patch comparison. A fundamental difficulty when comparing two patches from "real" data is to decide whether the differences should be ascribed to noise or intrinsic dissimilarity. Gaussian noise assumption leads to the classical definition of patch similarity based on the squared differences of intensities. For the case where noise departs from the Gaussian distribution, several similarity criteria have been proposed in the literature of image processing, detection theory and machine learning. By expressing patch (dis)similarity as a detection test under a given noise model, we introduce these criteria with a new one and discuss their properties. We then assess their performance for different tasks: patch discrimination, image denoising, stereo-matching and motion-tracking under gamma and Poisson noises. The proposed criterion based on the generalized likelihood ratio is shown to be both easy to derive and powerful in these diverse applications

    Detection of Oestrus and Lameness in Dairy Cows

    Get PDF
    • …
    corecore